Skip to main content

Advertisement

Log in

Friction stir welding of novel T-phase strengthened Zn-modified Al–Mg alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Friction stir welding is extensively used in aluminum alloys for advanced engineering applications. A current challenge for 5 ×  ×  × series alloys is their poor welding strength due to the lack of hardening precipitates. Here we report Zn-modified novel Al–Mg alloys with Zn/Mg ratio below 1.0. Compared with 5 ×  ×  × series alloys, the strength of the welded alloy can be increased by 100 MPa owing to the distribution of T-Mg32(AlZn)49 hardening precipitates during friction stir welding and the subsequent heat treatment after welding. Fine spherical T″ precipitates and coarsening polygonal T′ precipitates are both observed at the thermo-mechanically affected zone. The bimodal distribution of the precipitates and the widest precipitate-free zone weakened the strength of this region, and thus the welded alloys are fractured at this area. The novel alloy with T precipitates is expected to further stimulate the researchers to improve the properties of traditional 5 ×  ×  × series alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kou S (2003) Welding metallurgy. Wiley, Hoboken

    Google Scholar 

  2. Benedyk JC (2009) International temper designation systems for wrought aluminum systems: part 1 strain hardening aluminum alloys. Light Met Age 67:26–30

    Google Scholar 

  3. Jeong HT, Han SH, Kim WJ (2019) Effect of large amount of Mg(5-13wt%) on hot compressive deformation behavior and processing maps of Al-Mg alloys. J Alloys Compd 788:1282–1299. https://doi.org/10.1016/j.jallcom.2019.02.293

    Article  CAS  Google Scholar 

  4. Jang DH, Park YB, Kim WJ (2019) Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13wt%) after cold rolling. Mater Sci Eng A 744:36–44. https://doi.org/10.1016/j.msea.2018.11.132

    Article  CAS  Google Scholar 

  5. Gupta RK, Zhang R, Davies CHJ, Birbilis N (2018) A closer inspection of a grain boundary immune to intergranular corrosion in a sensitized Al-Mg alloy. Corros Sci 133:1–5. https://doi.org/10.1016/j.corsci.2018.01.009

    Article  CAS  Google Scholar 

  6. Shiva Chander M, Satish Kumar P, Devaraju A (2018) Influence of tool rotational speed on mechanical properties of aluminium alloy 5083 weldments in friction stir welding. Mater Today Proc 5:3518–3523. https://doi.org/10.1016/j.matpr.2018.06.196

    Article  CAS  Google Scholar 

  7. Feistauer EE, Bergmann LA, dos Santos JF (2018) Effect of reverse material flow on the microstructure and performance of friction stir welded T-joints of an Al-Mg alloy. Mater Sci Eng A 731:454–464. https://doi.org/10.1016/j.msea.2018.06.056

    Article  CAS  Google Scholar 

  8. Lofti AH, Nourouzi S (2018) Investigations of multi-pass friction stir welding for Al-Zn-Mg alloy. Mater Today Proc 5:17107–17113. https://doi.org/10.1016/j.matpr.2018.04.118

    Article  CAS  Google Scholar 

  9. dos Santos JF, Staron P, Fisher T, Robson JD, Schreyer A (2018) Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Mater 148:163–172. https://doi.org/10.1016/j.actamat.2018.01.020

    Article  CAS  Google Scholar 

  10. Ipekoglu G, Erim S, Cam G (2014) Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al alloy plates with different temper conditions. Metall Mater Trans A 45A:864–877. https://doi.org/10.1007/s11661-013-2026-y

    Article  CAS  Google Scholar 

  11. Safarbali B, Shamanian M, Eslami A (2018) Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024–T4 and 7075–T6 aluminum alloy. Trans Nonferr Met Soc China 28:1287–1297. https://doi.org/10.1016/S1003-6326(18)64766-1

    Article  CAS  Google Scholar 

  12. Sitdikov O, Avtokratova E, Markushev M (2019) Influence of strain rate on grain refinement in the Al-Mg-Sc-Zr alloy during high-temperature multidirectional isothermal forging. Mater Charact 157:109885. https://doi.org/10.1016/j.matchar.2019.109885

    Article  CAS  Google Scholar 

  13. Ying D, Zhang G, Yang Z, Xu G (2019) Microstructure characteristics and mechanical properties of new aerospace Al-Mg-Mn alloys with Al3(Sc1-xZrx) or Al3(Er1-xZrx). Mater Charact 153:79–91. https://doi.org/10.1016/j.matchar.2019.04.032

    Article  CAS  Google Scholar 

  14. Fu L, Li Y, Jiang F, Huang J, Yu G, Yin Z (2019) On the role of Sc and Er micro-alloying in the microstructure evolution of Al-Mg alloy sheets during annealing. Mater Charact 157:109918. https://doi.org/10.1016/j.matchar.2019.109918

    Article  CAS  Google Scholar 

  15. Yang D, Li X, He D, Huang H, Zhang L (2012) Study on microstructure and mechanical properties of Al-Mg-Mn-Er alloy joints welded by TIG and laser beam. Mater Des 40:117–123. https://doi.org/10.1016/j.matdes.2012.03.041

    Article  CAS  Google Scholar 

  16. Malopheyev S, Kulitskiy V, Mironov S, Zhemchuzhnikova D, Kaibyshev R (2014) Friction stir welding of an Al-Mg-Sc-Zr alloy in as-fabricated and work-hardened conditions. Mater Sci Eng A 600:159–170. https://doi.org/10.1016/j.msea.2014.02.018

    Article  CAS  Google Scholar 

  17. Chhangani S, Masa SK, Mathew RT, Prasad MJNV, Sujata M (2020) Microstructure evolution in Al-Mg-Sc alloy (AA5024): effect of thermal treatment, compression deformation and friction stir welding. Mater Sci Eng A 772:138790. https://doi.org/10.1016/j.msea.2019.138790

    Article  CAS  Google Scholar 

  18. Vysotskiy I, Zhemchuzhnikova D, Malopheyev S, Mironov S, Kaibyshev R (2020) Microstructure evolution and strengthening mechanisms in friction-stir welded Al-Mg-Sc alloy. Mater Sci Eng A 770:138540. https://doi.org/10.1016/j.msea.2019.138540

    Article  CAS  Google Scholar 

  19. Ratchev P, Verlinden B, De Smet P, Van Houtte P (1998) Precipitation hardening of an Al-4.2wt%Mg-0.6wt% Cu alloy. Acta Mater 46:3523–3533. https://doi.org/10.1016/S1359-6454(98)00033-0

    Article  CAS  Google Scholar 

  20. Engler O, Marioara CD, Hentschel T, Brinkman H (2017) Influence of copper additions on materials properties and corrosion behavior of Al-Mg alloy sheet. J Alloys Compd 710:650–662. https://doi.org/10.1016/j.jallcom.2017.03.298

    Article  CAS  Google Scholar 

  21. Li C, Sha G, Xia JH, Liu XF, Wu YY, Birbilis N, Ringer SP (2013) Enhanced age-hardening response of Al-4Mg-1Cu (wt%) microalloyed with Ag and Si. Scr Mater 68:857–860. https://doi.org/10.1016/j.scriptamat.2013.02.009

    Article  CAS  Google Scholar 

  22. Guo C, Zhang H, Zou J, Li B, Cui J (2019) Effects of pre-treatment combining with aging on the microstructures and mechanical properties of Al-Mg-Ag alloys. Mater Sci Eng A 740–741:82–91. https://doi.org/10.1016/j.msea.2018.10.039

    Article  CAS  Google Scholar 

  23. Guo C, Zhang H, Wu Z, Shen X, Wang P, Li B, Cui J, Nagaumi H (2019) An atomic resolution investigation of precipitation evolution in Al-Mg-Ag alloys. Mater Lett 248:231–235. https://doi.org/10.1016/j.matlet.2019.04.054

    Article  CAS  Google Scholar 

  24. Hou S, Zhang D, Ding Q, Zhang J, Zhuang L (2019) Solute clustering and precipitation of Al-5.1Mg-0.15Cu-xZn alloy. Mater Sci Eng A 759:465–478. https://doi.org/10.1016/j.msea.2019.05.066

    Article  CAS  Google Scholar 

  25. Ding Q, Zhang D, Zuo J, Hou S, Zhuang L, Zhang J (2018) The effect of grain boundary character evolution on the intergranular corrosion behavior of advanced Al-Mg-3wt%Zn alloy with Mg variation. Mater Charact 146:47–54. https://doi.org/10.1016/j.matchar.2018.09.044

    Article  CAS  Google Scholar 

  26. Hou L, Yu J, Zhang D, Zhuang L, Zhou L, Zhang J (2017) corrosion behavior of friction stir welded Al-Mg-(Zn) Alloys. Rare Metal Mater Eng 46(9):2437–2444. https://doi.org/10.1016/S1875-5372(17)30212-6

    Article  Google Scholar 

  27. Hou S, Zhang D, Zhang J, Zhuang L (2018) Precipitation hardening behavior and microstructure evolution of Al-5.1Mg-0.15Cu alloy with 3.0Zn (wt%) addition. J Mater Sci 53:3846–3861. https://doi.org/10.1007/s10853-017-1811-1

    Article  CAS  Google Scholar 

  28. Loffler H, Kovacs I, Lendvai J (1983) Decomposition processes in Al-Zn-Mg alloys. J Mater Sci 18:2215–2240. https://doi.org/10.1007/bf00541825

    Article  Google Scholar 

  29. Yuan YD (2006) Localized corrosion and stress corrosion cracking of Al-Mg alloys, PhD thesis, University of Birmingham

  30. Ma Q, Zhang D, Zhuang L, Zhang J (2018) Intergranular corrosion resistance of Zn modified 5××× series Al alloy during retrogression and re-aging treatment. Mater Charact 144:264–273. https://doi.org/10.1016/j.matchar.2018.07.008

    Article  CAS  Google Scholar 

  31. Silva-Magalhaes A, DeBacker J, Martin J, Bolmsjo G (2019) In-situ temperature measurement in friction stir welding of thick section aluminium alloys. J Manuf Process 39:12–17. https://doi.org/10.1016/j.jmapro.2019.02.001

    Article  Google Scholar 

  32. Shah PH, Badheka V (2016) An experimental investigation of temperature distribution and joint properties of Al 7075–T651 friction stir welded aluminium alloys. Procedia Technol 23:543–550. https://doi.org/10.1016/j.protcy.2016.03.061

    Article  Google Scholar 

  33. Zhang D, Shibayanagi T (2015) Material flow during friction stir spot welding of dissimilar Al2024/Al alloy. Mater Sci Technol 31:1077–1087. https://doi.org/10.1179/1743284714y.0000000674

    Article  Google Scholar 

  34. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructure evolution of friction stir welded 7050–T651 aluminum. Acta Mater 51:713–729. https://doi.org/10.1016/S1359-6454(02)00449-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China under Grant Nos. 51971019 and 51571013 for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Zhang or Li Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, X., Pan, Y. et al. Friction stir welding of novel T-phase strengthened Zn-modified Al–Mg alloy. J Mater Sci 56, 5283–5295 (2021). https://doi.org/10.1007/s10853-020-05609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05609-z

Navigation