Skip to main content
Log in

Comprehensive review on plant fiber-reinforced polymeric biocomposites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The expansion of environment-friendly materials based on natural sources increases dramatically in terms of biodegradable, recyclable, and environmental disputes throughout the world. Plant-based natural fiber, a high potential field of the reinforced polymer composite material, is considered as lightweight and economical products as they possess lower density, significant material characteristics, and extraordinary molding flexibility. The usage of plant fibers on the core structure of composite materials have drawn significant interest by the manufacturers to meet the increasing demand of the consumers for sustainable features with enhanced mechanical performances and functionalities. The plant fiber-based composites have widespread usage in construction, automotive, packaging, sports, biomedical, and defense sectors for their superior characteristics. Therefore, this critical review would demonstrate an overview regarding the background of natural fiber composites, factors influencing the composite properties, chemical interaction between the fiber and matrices, future potentiality, and marketing perspectives for triggering new research works in the field of biocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright Elsevier, 2018

Figure 2

Copyright Elsevier, 2020

Figure 3

Copyright ACS, 2020

Figure 4

Copyright Elsevier, 2015

Figure 5
Figure 6

Copyright Elsevier 2011, 2016, 2018, 2019

Figure 7
Figure 8

Copyright Elsevier, 2019

Figure 9
Figure 10

Copyright Elsevier, 2013

Figure 11

Copyright Elsevier, 2013

Figure 12

Copyright Elsevier, 2016a, 2019b

Figure 13
Figure 14

Copyright Elsevier, 2010, 2017, 2018 and 2017

Figure 15

Copyright Elsevier, 2007

Figure 16

Copyright Elsevier, 2019

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BCs:

Biocomposite

C:

Carbon

Ca2 + :

Calcium ions

CH4 :

Methane

ClO2 :

Chlorine dioxide

CO2 :

Carbon dioxide

COOH:

Carboxyl

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

EEE:

Equity, Ecology, and Economy

FE:

Finite element

FM:

Flexural modulus

FS:

Flexural strength

GPa:

Gigapascal

HClO2 :

Chlorous acid

HDPE:

High-density polyethylene

IBS:

Internal bonding strength

IROM:

Inverse rules of the mixture

LCA:

Lifecycle assessment

LCM:

Liquid composite molding

MDI:

Diphenylmethane diisocyanate

MOE:

Modulus of elongation

MOR:

Modulus of rupture

MPa:

Megapascal

NaClO2 :

Sodium chlorite

OH:

Hydroxyl

PA11:

Polyamide 11

PBAT:

Poly(butylene adipate-co-terephthalate)

PCL:

Polycaprolactone

PE:

Polyethylene

PHA:

Polyhydroxyalkanoates

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate

PHU:

Polyhydroxyurethane

PLA:

Poly (lactic) acid

PP:

Polypropylene

PS:

Polystyrene

PU:

Polyurethane

PVC:

Polyvinyl chloride

REV:

Representative elementary volume

RIFT:

Resin Infusion under Flexible Tooling

ROM:

Rules of the mixture

RTM:

Resin transfer molding

SCRIMP:

Composites resin infusion manufacture process

SEM:

Scanning electron microscope

SiC:

Silicon carbide

TGA:

Thermal gravimetric analysis

TM:

Tensile modulus

TPS:

Thermoplastic styrenic elastomers

TS:

Tensile strength

VARTM:

Vacuum-assisted resin transfer molding

XRD:

X-ray diffraction

References

  1. Zaini E et al (2020) Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: a review. J Sandw Struct Mater 22(3):525–550

    CAS  Google Scholar 

  2. Jeyapragash R, Srinivasan V, Sathiyamurthy S (2020) Mechanical properties of natural fiber/particulate reinforced epoxy composites—a review of the literature. Mater Today Proc 22:1223–1227

    CAS  Google Scholar 

  3. Hasan K, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers 12(5):1072

    CAS  Google Scholar 

  4. Singh AA et al (2020) Green processing route for polylactic acid-cellulose fiber biocomposites. ACS Sustain Chem Eng 8(10):4128–4136

    CAS  Google Scholar 

  5. KMF Hasan, PG Horváth, T Alpár (2020) Effects of alkaline treatments on coconut fiber reinforced biocomposites. In: Csiszár Beáta HC, Kajos Luca F, Kovács Olivér B, Mez˝o E, Szabó R, Szabó-Guth K (eds) 9th interdisciplinary doctoral conference doctoral student association of the University of Pécs, Pecs, Hungary pp 248

  6. McIntyre JE (1971) The chemistry of fibres. Edward Arnold, London

    Google Scholar 

  7. Piqué R et al (2018) The production and use of cordage at the early Neolithic site of La Draga (Banyoles, Spain). Quat Int 468:262–270

    Google Scholar 

  8. Hu J et al (2020) Fundamentals of the fibrous materials. In: Handbook of fibrous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–36

  9. Palamutcu S (2017) Textiles and clothing sustainability. Springer, Singapore, pp 1–22

    Google Scholar 

  10. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci. https://doi.org/10.1007/s10853-019-03990-y

    Article  Google Scholar 

  11. Hanan F, Jawaid M, Md Tahir P (2020) Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J Natl Fibers 17(2):155–167

    CAS  Google Scholar 

  12. Nagamadhu M, Jeyaraj P, Kumar GM (2020) Influence of textile properties on dynamic mechanical behavior of epoxy composite reinforced with woven sisal fabrics. Sādhanā 45(1):1–10

    Google Scholar 

  13. Cisneros-López EO et al (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24(1):35–53

    Google Scholar 

  14. Ljungberg LY (2007) Materials selection and design for development of sustainable products. Mater Des 28(2):466–479

    Google Scholar 

  15. Goddard JJ, Kallis G, Norgaard RB (2019) Keeping multiple antennae up: coevolutionary foundations for methodological pluralism. Ecol Econ 165:106420

    Google Scholar 

  16. Kalita D, Netravali A (2017) Thermoset resin based fiber reinforced biocomposites. In: textile finishing—recent developments and future trends. Scrivener Publishing LLC, Beverly, MA, USA, pp 423–484

  17. Mehmandost N et al (2019) Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. J Environ Eng 7(5):103424

    CAS  Google Scholar 

  18. Bourmaud A et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408

    Google Scholar 

  19. Reddy MM et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689

    CAS  Google Scholar 

  20. Wang J et al (2019) Biobased amorphous polyesters with high Tg: trade-off between rigid and flexible cyclic diols. ACS Sustain Chem Eng 7(6):6401–6411

    CAS  Google Scholar 

  21. Dai J et al (2018) High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustain Chem Eng 6(6):7589–7599

    CAS  Google Scholar 

  22. Chawla K (2016) Fibrous materials. Cambridge University Press, Cambridge, pp 214–219

    Google Scholar 

  23. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    CAS  Google Scholar 

  24. Liu Y et al (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr Polym 218:179–187

    CAS  Google Scholar 

  25. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    CAS  Google Scholar 

  26. Hamid NH et al (2019) Mechanical properties and moisture absorption of epoxy composites mixed with amorphous and crystalline silica from rice husk. BioResources 14(3):7363–7374

    Google Scholar 

  27. Vinod A, Siengchin S, Parameswaranpillai J (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978

    CAS  Google Scholar 

  28. Biswas B et al (2019) Thermal stability, swelling and degradation behaviour of natural fibre based hybrid polymer composites. Cellulose 26(7):4445–4461

    CAS  Google Scholar 

  29. Bera T et al (2019) Moisture absorption and thickness swelling behaviour of luffa fibre/epoxy composite. J Reinf Plast Compos 38(19–20):923–937

    CAS  Google Scholar 

  30. Chaudhary V, Bajpai PK, Maheshwari S (2020) Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. J Natl Fibers 17(1):84–100

    CAS  Google Scholar 

  31. Summerscales J (2020) A review of bast fibres and their composites: part 4 ∼ organisms and enzyme processes. Compos Part A 140:106149

    Google Scholar 

  32. Mahmud S et al (2019) In situ synthesis of green AgNPs on ramie fabric with functional and catalytic properties. Emerg Mater Res. https://doi.org/10.1680/jemmr.19.00012

    Article  Google Scholar 

  33. Hasan K et al (2019) A novel coloration of polyester fabric through green silver nanoparticles (G-AgNPs@ PET). Nanomaterials 9(4):569

    Google Scholar 

  34. Mahmud S et al (2019) Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Text Res J 90(11–12):1224–1236

    Google Scholar 

  35. Karthika M et al (2019) Biodegradation of green polymeric composites materials. In: Bio monomers for green polymeric composite materials. John Wiley & Sons Ltd, River Street, USA, pp 141–159

  36. Muniyasamy S et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394

    Google Scholar 

  37. Zumstein MT et al (2019) Dos and do nots when assessing the biodegradation of plastics. Environ Sci Technol 53:9967–9969

    CAS  Google Scholar 

  38. Indran S, Raj RE, Sreenivasan V (2014) Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydr Polym 110:423–429

    CAS  Google Scholar 

  39. Zareei SA et al (2017) Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud Constr Mater 7:73–81

    Google Scholar 

  40. Mahmud S et al (2020) Waste cellulose fibers reinforced polylactide toughened by direct blending of epoxidized soybean oil. Fiber Polym 21(12):2949–2961

    Google Scholar 

  41. Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    CAS  Google Scholar 

  42. Zinge C, Kandasubramanian B (2020) Nanocellulose based biodegradable polymers. Eur Polym J 133:109758

    CAS  Google Scholar 

  43. Mahmud S et al (2019) Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. J Appl Polym Sci 136(46):48221

    Google Scholar 

  44. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498

    CAS  Google Scholar 

  45. JR Pires, VGL de Souza, AL Fernando (2018) Production of nanocellulose from lignocellulosic biomass wastes: prospects and limitations. International conference on innovation, engineering and entrepreneurship. Springer, pp 719-725

  46. Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    CAS  Google Scholar 

  47. Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:612–632

    Google Scholar 

  48. Thakur MK, VK Thakur, Prasanth R (2014) Nanocellulose-based polymer nanocomposites: an introduction. In: nanocellulose polymer nanocomposites. John Wiley & Sons Ltd, River Street, USA, pp 1–15

  49. Mahmud S et al (2019) The consequence of epoxidized soybean oil in the toughening of polylactide and micro-fibrillated cellulose blend. Polym Sci Ser A 61(6):832–486

    Google Scholar 

  50. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A 77:1–25

    CAS  Google Scholar 

  51. AL-Oqla FM, Omari MA (2017) Sustainable biocomposites: challenges, potential and barriers for development, in Green biocomposites. Springer, Berlin, pp 13–29

    Google Scholar 

  52. Al-Oqla FM, Sapuan S (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67(10):2450–2463

    CAS  Google Scholar 

  53. Sun E et al (2019) Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Compos Part B 165:193–198

    Google Scholar 

  54. Chandrasekar M et al (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos 46(3):119–136

    CAS  Google Scholar 

  55. Al-Oqla FM, Sapuan S (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    CAS  Google Scholar 

  56. Nishino T et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286

    CAS  Google Scholar 

  57. Dinesh S et al (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27(1):9

    CAS  Google Scholar 

  58. Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27(5):2569–2582

    CAS  Google Scholar 

  59. Radzuan NAM et al (2020) New processing technique for biodegradable kenaf composites: a simple alternative to commercial automotive parts. Compos Part B 184:107644

    Google Scholar 

  60. Kong C, Park H, Lee J (2014) Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett 130:21–25

    CAS  Google Scholar 

  61. Hasan KMF et al (2020) Thermo-mechanical characteristics of flax woven fabric reinforced PLA and PP biocomposites. Green Mater. https://doi.org/10.1680/jgrma.20.00052

    Article  Google Scholar 

  62. Hasan KMF, Péter György H, Tibor A (2020) Thermo-mechanical behavior of MDI bonded flax/glass woven fabric reinforced laminated composites. ACS Omega. https://doi.org/10.1021/acsomega.0c04798

    Article  Google Scholar 

  63. Pereira AL et al (2020) Mechanical and thermal characterization of natural intralaminar hybrid composites based on Sisal. Polymers 12(4):866

    CAS  Google Scholar 

  64. Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    CAS  Google Scholar 

  65. Huda MS et al (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study. Compos Sci Technol 66(11):1813–1824

    CAS  Google Scholar 

  66. Bullions T et al (2006) Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol 66(1):102–114

    CAS  Google Scholar 

  67. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644

    CAS  Google Scholar 

  68. Dev VRG et al (2010) Agave sisalana, a biosorbent for the adsorption of reactive red 120 from aqueous solution. J Text Inst 101(5):414–422

    Google Scholar 

  69. Jayanth D et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26(2):838–865

    CAS  Google Scholar 

  70. Naseem A et al (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93:296–313

    CAS  Google Scholar 

  71. Ilyas R et al (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186–202

    CAS  Google Scholar 

  72. Seghini MC et al (2020) Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27(1):511–530

    CAS  Google Scholar 

  73. Aliotta L et al (2019) Evaluation of mechanical and interfacial properties of bio-composites based on poly (lactic acid) with natural cellulose fibers. Int J Mol Sci 20(4):960

    CAS  Google Scholar 

  74. Maslinda A et al (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos Struct 167:227–237

    Google Scholar 

  75. Subramanian SG, Rajkumar R, Ramkumar T (2019) Characterization of natural cellulosic fiber from cereus hildmannianus. J Natl Fiber. https://doi.org/10.1080/15440478.2019.1623744

    Article  Google Scholar 

  76. Saba N et al (2016) A review on flammability of epoxy polymer, cellulosic and non-cellulosic fiber reinforced epoxy composites. Polym Adv Technol 27(5):577–590

    CAS  Google Scholar 

  77. Shoja M et al (2020) Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. Int J Biol Macromol 157:715–725

    CAS  Google Scholar 

  78. Sultana MZ et al (2019) Green synthesis of glycerol monostearate-modified cationic waterborne polyurethane. Emerg Mater Res 8(2):137–147

    Google Scholar 

  79. Tarrés Q et al (2019) Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers 11(11):1736

    Google Scholar 

  80. Zuccarello B, Marannano G (2018) Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater Des 149:87–100

    CAS  Google Scholar 

  81. Pantano A, Zuccarello B (2018) Numerical model for the characterization of biocomposites reinforced by sisal fibres. Proc Struct Integr 8:517–525

    Google Scholar 

  82. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871

    CAS  Google Scholar 

  83. Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: Sustainable and renewable green materials. Renew Sust Energ Rev 79:558–584

    Google Scholar 

  84. Monteiro SN et al (2016) Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Mater Des 96:263–269

    CAS  Google Scholar 

  85. Lin Y et al (2018) Fabrication and performance of a novel 3D superhydrophobic material based on a loofah sponge from plant. Mater Lett 230:219–223

    CAS  Google Scholar 

  86. Akil H et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

    CAS  Google Scholar 

  87. Yan W-H et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular plant 4(2):319–330

    CAS  Google Scholar 

  88. Gowda TM, Naidu A, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A 30(3):277–284

    Google Scholar 

  89. Ben Daly H et al (2007) Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polym Compos 28(3):355–364

    CAS  Google Scholar 

  90. Dash B et al (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20(1):62–71

    CAS  Google Scholar 

  91. Alam M, Khan M, Lehmann E (2006) Comparative study of water absorption behavior in biopol® and jute-reinforced biopol® composite using neutron radiography technique. J Reinf Plast Compos 25(11):1179–1187

    CAS  Google Scholar 

  92. Saha A et al (1999) Study of jute fiber reinforced polyester composites by dynamic mechanical analysis. J Appl Polym Sci 71(9):1505–1513

    CAS  Google Scholar 

  93. Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    CAS  Google Scholar 

  94. Mahmud S et al (2020) Nucleation and crystallization of poly (propylene 2, 5-furan dicarboxylate) by direct blending of microcrystalline cellulose: improved tensile and barrier properties. Cellulose 27(16):9423–9436

    Google Scholar 

  95. Joseph P et al (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A 34(3):253–266

    Google Scholar 

  96. Pickering KL et al (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mat Bioenergy 1(1):109–117

    Google Scholar 

  97. Kabir M et al (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43(7):2883–2892

    CAS  Google Scholar 

  98. Alpár Tibor MG, Koroknai L (2017) Natural fiber reinforced PLA composites: effect of shape of fiber elements on properties of composites. In: handbook of composites from renewable materials design and manufacturing. John Wiley & Sons Ltd, River Street, USA, pp 287–309

  99. Byun J-H, Chou T-W (1989) Modelling and characterization of textile structural composites: a review. J Strain Anal Eng Design 24:253–262

    Google Scholar 

  100. Bilisik K (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82(7):725–743

    CAS  Google Scholar 

  101. Tiber B, Balcıoğlu HE (2019) Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos 40(1):217–228

    CAS  Google Scholar 

  102. Kenned JJ et al (2020) Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos Sci Technol 185:107890

    CAS  Google Scholar 

  103. Ku H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873

    Google Scholar 

  104. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892https://doi.org/10.1007/s10853-019-03990-y

    Article  CAS  Google Scholar 

  105. Zako M, Uetsuji Y, Kurashiki T (2003) Finite element analysis of damaged woven fabric composite materials. Compos Sci Technol 63(3):507–516

    CAS  Google Scholar 

  106. Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53

    Google Scholar 

  107. Rong MZ et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    CAS  Google Scholar 

  108. Uddin N et al (2006) Vacuum-assisted resin transfer molding. Concr Int 28(11):53–56

    Google Scholar 

  109. Abraham D, Matthews S, McIlhagger R (1998) A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. Compos Part A 29(7):795–801

    Google Scholar 

  110. Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos Part A 41(1):16–21

    Google Scholar 

  111. Masoodi R et al (2012) Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos 31(6):363–378

    CAS  Google Scholar 

  112. Van Hau Nguyen ML, Cosson B (2014) Experimental analysis of flow behavior in the flax fibre reinforcement with double scale porosity. 12th International Conference on Flow Processes in Composite materials (FPCM-12). Enschede, Netherlands, July 14–16, 2014

  113. Nguyen V-H (2017) Characterization and modeling of flax fiber in composite processing. Scholars’ Press, Atlanta, p 180

    Google Scholar 

  114. Adekunle K, Åkesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 116(3):1759–1765

    CAS  Google Scholar 

  115. Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54(2):355–360

    Google Scholar 

  116. Baran I, Tutum CC, Hattel JH (2013) The effect of thermal contact resistance on the thermosetting pultrusion process. Compos Part B 45(1):995–1000

    CAS  Google Scholar 

  117. Alam M, Maniruzzaman M, Morshed M (2014) Application and advances in microprocessing of natural fiber (Jute)–based composites. Elsevier, Amsterdam, pp 243–260

    Google Scholar 

  118. Balla VK et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B 174:106956

    CAS  Google Scholar 

  119. Kikuchi T et al (2014) Relationships between degree of skill, dimension stability and mechanical properties of composite structure in hand lay-up fabrication method. In: contemporary ergonomics and human factors 2014—proceedings of the international conference on ergonomics & human factors 2014, Southampton, UK, 7–10 April 2014. CRC Press, pp 1–9

  120. Yuhazri M, Sihombing H (2010) A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. Int J Basic Appl Sci 10:63–66

    Google Scholar 

  121. Faria DL et al (2020) Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Res 27(9):1–13

    Google Scholar 

  122. Scherübl B, Hintermann M (2005) Application of natural fibre reinforced plastics for automotive exterior parts, with a focus on underfloor systems. In: Proceedings of the 8th international AVK-TV conference Baden: Baden, pp 221-268

  123. Araújo J, Waldman W, De Paoli M (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775

    Google Scholar 

  124. Moudood A, Hall W, Öchsner A, Li H, Rahman A, Francucci G (2019) Effect of moisture in flax fibres on the quality of their composites. J Nat Fibers 16(2):209–224

    CAS  Google Scholar 

  125. Supriyo Chakraborty LCaVKJ (2010) A Review on Natural Fiber Composites. [Cited 2020 1st Dec]. https://www.fibre2fashion.com/industry-article/4951/a-review-on-natural-fiber-composites

  126. Hindersmann A (2019) Confusion about infusion: an overview of infusion processes. Compos Part A 126:105583

    CAS  Google Scholar 

  127. WilliamsChristopher SJ, Stephen G (1996) Resin infusion under flexible tooling: a review. Compos Part A 27(7):517–524

    Google Scholar 

  128. Summerscales J, Searle T (2005) Low-pressure (vacuum infusion) techniques for moulding large composite structures. Proc Inst Mech Eng Part L J Mater Des Appl 219(1):45–58

    Google Scholar 

  129. Williams C, Summerscales J, Grove S (1996) Resin infusion under flexible tooling (RIFT): a review. Compos Part A 27(7):517–524

    Google Scholar 

  130. Summerscales J (2011) Resin infusion under flexible tooling (RIFT). In: Wiley encyclopedia of composites. John Wiley & Sons Ltd, River Street, USA, pp 1–11

  131. Dewan MW et al (2013) Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J Appl Polym Sci 128(6):4110–4123

    CAS  Google Scholar 

  132. Harris D et al (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153(2):420–426

    CAS  Google Scholar 

  133. Kasai W et al (2005) Compression behavior of Langmuir–Blodgett monolayers of regioselectively substituted cellulose ethers with long alkyl side chains. Langmuir 21(6):2323–2329

    CAS  Google Scholar 

  134. Abdelmouleh M et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7):1627

    CAS  Google Scholar 

  135. Madsen B et al (2004) Properties of plant fiber yarn polymer composites. Compos Part B 174:106956

    Google Scholar 

  136. Rajendran Royan NR et al (2018) UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS ONE 13(5):e0197345

    Google Scholar 

  137. Bhatia JK, BS Kaith, Kalia S (2016) Recent developments in surface modification of natural fibers for their use in biocomposites. In: biodegradable green composites. John Wiley & Sons Ltd, River Street, USA, pp 80–117

  138. Kocaman S et al (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr polym 159:48–57

    CAS  Google Scholar 

  139. Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27(4):775–783

    Google Scholar 

  140. Manral, A. and P.K. Bajpai (2018) Analysis of Natural fiber constituents: a review. in IOP Conference Series: Materials Science and Engineering. IOP Publishing. pp 1–5

  141. Liu M et al (2017) Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Compos A 95:377–387

    CAS  Google Scholar 

  142. Sgriccia N, Hawley M, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637

    Google Scholar 

  143. Battegazzore D et al (2019) Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Compos B 163:761–768

    CAS  Google Scholar 

  144. Lee WJ et al (2019) Interfacially-grafted single wall carbon nanotube/poly (vinyl alcohol) composite fibers. Carbon 146:162–171

    CAS  Google Scholar 

  145. Sanjay M et al (2019) The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers 16(4):600–612

    CAS  Google Scholar 

  146. Fakirov S, Bhattacharyya D (2007) Engineering biopolymers: homopolymers, blends, and composites. Carl Hanser Verlag GmbH Co KG, Munich, Germany

    Google Scholar 

  147. Jain D et al (2019) Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. Int J Heat Mass Tran 130:431–439

    CAS  Google Scholar 

  148. Mohan T, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos B 169:118–125

    CAS  Google Scholar 

  149. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog polym sci 37(11):1552–1596

    CAS  Google Scholar 

  150. Mohanty A, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24

    Google Scholar 

  151. Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B 92:94–132

    CAS  Google Scholar 

  152. Nadlene R et al (2016) A review on roselle fiber and its composites. J Natl Fibers 13(1):10–41

    Google Scholar 

  153. Srinivas K, Naidu AL, Raju Bahubalendruni MVA (2017) A Review on chemical and mechanical properties of natural fiber reinforced polymer composites. Int J Perform Eng. https://doi.org/10.23940/ijpe.17.02.p8.189200

    Article  Google Scholar 

  154. Ismail AS, Jawaid M, Naveen J (2019) Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials 12(13):2094

    CAS  Google Scholar 

  155. Calabrese L et al (2019) Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J Appl Polym Sci 136(14):47203

    Google Scholar 

  156. Huang T, Gong Y (2018) A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects. Compos Struct 185:401–410

    Google Scholar 

  157. Dona KNG et al (2020) Modeling of water wicking along fiber/matrix interface voids in unidirectional carbon/vinyl ester composites. Microfluid Nanofluid 24(31):31

    Google Scholar 

  158. Zakaria S, Kok Poh L (2002) Polystyrene-benzoylated EFB reinforced composites. Polym Plast Technol Eng 41(5):951–962

    CAS  Google Scholar 

  159. Wang B et al (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463

    CAS  Google Scholar 

  160. Mohammed L et al (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  161. Brebu M (2020) Environmental degradation of plastic composites with natural fillers—a review. Polymers 12(1):166

    CAS  Google Scholar 

  162. Stana-Kleinschek K et al (2003) Correlation of regenerated cellulose fibres morphology and surface free energy components. Lenzing Ber 82(1):83–95

    Google Scholar 

  163. Abdelmouleh M et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54

    CAS  Google Scholar 

  164. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    CAS  Google Scholar 

  165. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:31–45

    CAS  Google Scholar 

  166. Sreekala M et al (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329

    CAS  Google Scholar 

  167. Chattopadhyay H, Sarkar P (1946) A new method for the estimation of cellulose. Proc Natl Inst Sci India 12(1):23–46

    CAS  Google Scholar 

  168. Campilho R (2017) Recent innovations in biocomposite products. In: biocomposites for high-performance applications Elsevier, pp 275–306

    Google Scholar 

  169. Sen T, Reddy HJ (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int J Innov Manag Technol 2(3):192–198

    Google Scholar 

  170. B Suddell (2008) Industrial fibres: recent and current developments. In: Proceedings of the symposium on natural fibresFAO and CFC Rome, pp 71–82

  171. Bongarde U, Shinde V (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innov Technol 3(2):431–436

    Google Scholar 

  172. Reddy BS et al (2020) Pineapple leaf fibers. Springer, Cham, pp 279–296

    Google Scholar 

  173. Cai M et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A 90:589–597

    CAS  Google Scholar 

  174. Simbaña EA et al (2020) Handbook of natural fibres. Elsevier, Amsterdam, pp 197–218

    Google Scholar 

  175. Yeh C-H, Yang T-C (2020) Utilization of waste bamboo fibers in thermoplastic composites: influence of the chemical composition and thermal decomposition behavior. Polymers 12(3):636

    CAS  Google Scholar 

  176. Fei ME et al (2019) Toughening of bamboo fibers/unsaturated polyester composites with 2-acetoacetoxyethyl methacrylate. Polym Compos 40(4):1595–1601

    CAS  Google Scholar 

  177. Goh L, Zulkornain A (2019) Influence of bamboo in concrete and beam applications. J Phys Conf Ser 1349:012127

    CAS  Google Scholar 

  178. Bozaci E (2019) Optimization of the alternative treatment methods for Ceiba pentandra (L.) Gaertn (kapok) fiber using response surface methodology. J Text Inst 110(10):1404–1414

    CAS  Google Scholar 

  179. Krishnadev P, Subramanian KS, Janavi GJ, Ganapathy S, Lakshmanan A (2020) Synthesis and characterization of nano-fibrillated cellulose derived from Green Agave americana L. Fiber BioResour 15(2):2442–2458

    CAS  Google Scholar 

  180. Binoj J, Bibin J (2019) Failure analysis of discarded Agave tequilana fiber polymer composites. Eng Fail Anal 95:379–391

    CAS  Google Scholar 

  181. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24

    CAS  Google Scholar 

  182. García M, Garmendia I, García J (2008) Influence of natural fiber type in eco-composites. J Appl Polym Sci 107(5):2994–3004

    Google Scholar 

  183. Faruk O et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26

    CAS  Google Scholar 

  184. Korniejenko K et al (2016) Mechanical properties of geopolymer composites reinforced with natural fibers. Proc Eng 151:388–393

    CAS  Google Scholar 

  185. Dash B et al (2000) Novel low-cost jute–polyester composites. III. Weathering and thermal behavior. J Appl Polym Sci 78(9):1671–1679

    CAS  Google Scholar 

  186. Rdsg C (2015) Introduction to natural fibre composites. In: Rdsg C (ed) Natural fibre composites. CRC Press, Taylor & Francis, Boca Raton, pp 1–28

    Google Scholar 

  187. Du Y, Yan N, Kortschot MT (2013) An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos Struct 106:160–166

    Google Scholar 

  188. Armstrong L, Kingston R (1960) Effect of moisture changes on creep in wood. Nature 185(4716):862–863

    Google Scholar 

  189. Xu Y et al (2010) Creep behavior of bagasse fiber reinforced polymer composites. BioResour Technol 101(9):3280–3286

    CAS  Google Scholar 

  190. Sadasivuni KK et al (2020) Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos 41:32–1

    CAS  Google Scholar 

  191. Nosrati N, Zabett A, Sahebian S (2020) Long-term creep behaviour of E-glass/epoxy composite: time-temperature superposition principle. Plast Rubber Compos 49(6):254–262

    CAS  Google Scholar 

  192. Pai AR, Jagtap RN (2015) Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites—a review. J Mater Environ Sci 6(4):902–917

    CAS  Google Scholar 

  193. Standard A G99 (2010) standard test method for wear testing with a pin-on-disk apparatus, Pp 1–5

  194. Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2):829–840

    CAS  Google Scholar 

  195. Yousif B, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853

    CAS  Google Scholar 

  196. Shubhra QT, Alam A, Beg M (2011) Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater Lett 65(2):333–336

    CAS  Google Scholar 

  197. Azwa Z et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    CAS  Google Scholar 

  198. Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A 43(8):1419–1429

    Google Scholar 

  199. de Andrade Silva F et al (2010) Physical and mechanical properties of durable sisal fiber–cement composites. Constr Build Mater 24(5):777–785

    Google Scholar 

  200. Manfredi LB et al (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91(2):255–261

    CAS  Google Scholar 

  201. Potluri R et al (2018) Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Mater Today 5(2):5809–5818

    CAS  Google Scholar 

  202. Tian F, Zhong Z, Pan Y (2018) Modeling of natural fiber reinforced composites under hygrothermal ageing. Compos Struct 200:144–152

    Google Scholar 

  203. Hallal A, Younes R, Fardoun F (2013) Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos Part B 50:22–31

    Google Scholar 

  204. Xiong X et al (2018) Finite element models of natural fibers and their composites: A review. J Reinf Plast Compos 37(9):617–635

    CAS  Google Scholar 

  205. Sliseris J, Yan L, Kasal B (2016) Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos B 89:143–154

    CAS  Google Scholar 

  206. Naveen J et al (2019) Finite element analysis of natural fiber-reinforced polymer composites. In: modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 153–170

  207. Landel RF, Nielsen LE (1993) Mechanical test and polymer transitions. In: mechanical properties of polymers and composites. CRC press, Boca Ratan, USA

  208. Rymaruk MJ et al (2019) Effect of core cross-linking on the physical properties of poly (dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil. Macromolecules 52(18):6849–6860

    CAS  Google Scholar 

  209. Haske-Cornelius O et al (2019) Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. Eur Polym J 120:109201

    CAS  Google Scholar 

  210. He Y et al (2020) Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater Chem Phys 252:123247

    CAS  Google Scholar 

  211. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189

    CAS  Google Scholar 

  212. As N, Hindman D, Büyüksarı Ü (2018) The effect of bending parameters on mechanical properties of bent oak wood. Eur J Wood Wood Prod 76(2):633–641

    CAS  Google Scholar 

  213. Xia Y et al (2014) Compression behavior of concrete cylinders externally confined by flax fiber reinforced polymer sheets. Adv Struct Eng 17(12):1825–1833

    Google Scholar 

  214. Habibi M, Laperrière L, Mahi Hassanabadi H (2019) Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 1: mechanical behavior of unidirectional flax fiber composites. J Nat Fibers 16(7):1064–1076

    CAS  Google Scholar 

  215. Trindade ACC et al (2020) Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cem Concr Compos 113:103703

    CAS  Google Scholar 

  216. Kain G et al (2013) Softwood bark for modern composites. Pro Ligno 9(4):460–468

    Google Scholar 

  217. Suharty NS et al (2016) Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Proc Chem 19:253–258

    CAS  Google Scholar 

  218. Sapiai N, Jumahat A, Mahmud J (2015) Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. J Teknol 76(3):115–120

    Google Scholar 

  219. Sun L et al (2019) New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur Polym J 118:642–650

    CAS  Google Scholar 

  220. Sujaritjun W et al (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672

    CAS  Google Scholar 

  221. Fernandes EM, Mano JF, Reis RL (2013) Hybrid cork–polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162

    Google Scholar 

  222. Georgiopoulos P et al (2016) The effect of surface treatment on the performance of flax/biodegradable composites. Compos Part B 106:88–98

    CAS  Google Scholar 

  223. Nasution H, Harahap H (2019) Aging properties and biodegradation rate of styrofoam composite filled with modified sawdust. J Eng 15(2):17–29

    Google Scholar 

  224. Jayalatha G, Kutty SK (2013) Effect of short nylon-6 fibres on natural rubber-toughened polystyrene. Mater Des 43:291–298

    CAS  Google Scholar 

  225. Murali B, Ramnath BV, Chandramohan D (2019) Mechanical properties of boehmeria nivea reinforced polymer composite. Mater Today 16:883–888

    CAS  Google Scholar 

  226. Bhuvaneshwaran M, Sampath P, Sagadevan S (2019) Influence of fiber length, fiber content and alkali treatment on mechanical properties of natural fiber-reinforced epoxy composites. Polimery. https://doi.org/10.14314/polimery.2019.2.2

    Article  Google Scholar 

  227. Park K, Kong C, Park H (2015) A Study on structural design of natural fiber composites automobile body panel considering impact load. Compos Res 28(5):291–296

    Google Scholar 

  228. Park G, Park H (2018) Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Compos Struct 184:800–806

    Google Scholar 

  229. Węcławski BT, Fan M, Hui D (2014) Compressive behaviour of natural fibre composite. Compos Part B 67:183–191

    Google Scholar 

  230. Gironès J et al (2011) Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Compos Sci Technol 71(2):122–128

    Google Scholar 

  231. Zhang Y et al (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177

    CAS  Google Scholar 

  232. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66(7–8):895–906

    CAS  Google Scholar 

  233. Chandekar H, Chaudhari V, Waigaonkar S (2020) A review of jute fiber reinforced polymer composites. Mater Today 26(2):2079–2082

    CAS  Google Scholar 

  234. Djafar Z, Renreng I, Jannah M (2020) Tensile and bending strength analysis of ramie fiber and woven ramie reinforced epoxy composite. J Natl Fibers 1:12

    Google Scholar 

  235. Akhtar MN et al (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Natl Sci Mater Int 26(6):657–664

    CAS  Google Scholar 

  236. Gupta M, Srivastava R (2016) Properties of sisal fibre reinforced epoxy composite. Ind J Fiber Text 41(3):235–241

    CAS  Google Scholar 

  237. Fiorelli J et al (2013) Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater Res 16(2):439–446

    Google Scholar 

  238. Cabral MR et al (2018) Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch Civ Mech Eng 18:1092–1102

    Google Scholar 

  239. Xia T et al (2018) The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind Crops Prod 121:73–79

    CAS  Google Scholar 

  240. Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A Solid Mech Mater Eng 47:551–555

    Google Scholar 

  241. Jayabal S, Natarajan U (2011) Influence of fiber parameters on tensile, flexural, and impact properties of nonwoven coir–polyester composites. Int J Adv Manuf Technol 54(5):639–648

    Google Scholar 

  242. Ramnath BV et al (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366

    Google Scholar 

  243. Odusote J, Oyewo A (2016) Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Eng Technol 7(1):125–139

    Google Scholar 

  244. Dong Y et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84

    CAS  Google Scholar 

  245. Hidalgo-Salazar MA, Salinas E (2019) Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos B 176:107135

    CAS  Google Scholar 

  246. Ferrandez-Garcia MT et al (2019) Experimental evaluation of a new giant reed (Arundo Donax L.) composite using citric acid as a natural binder. Agronomy 9(12):882

    CAS  Google Scholar 

  247. Sanjay M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    CAS  Google Scholar 

  248. Islam MN et al (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos Part A Appl Sci Manuf 41(2):192–198

    Google Scholar 

  249. Georgiopoulos P, Kontou E, Georgousis G (2018) Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos Commun 10:6–10

    Google Scholar 

  250. Jabbar A et al (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349

    Google Scholar 

  251. Dunne R, Desai D, Sadiku R (2017) Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl Acoust 125:184–193

    Google Scholar 

  252. Mahmud S et al (2020) Fully Bio-based micro-cellulose incorporated poly (butylene 2, 5-furandicarboxylate) transparent composites: preparation and characterization. Fiber Polym 21(7):1550–1559

    CAS  Google Scholar 

  253. Akampumuza O et al (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569

    CAS  Google Scholar 

  254. Markarian J (2007) Long fibre reinforced thermoplastics continue growth in automotive. Plast Addit Compd 9(2):20–24

    Google Scholar 

  255. Adekomaya O (2020) Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environ Sci Pollut Res 27(8):8807–8813

    Google Scholar 

  256. Chen S et al (2020) Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol Biosci 20(3):1900385

    CAS  Google Scholar 

  257. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128

    CAS  Google Scholar 

  258. Arregi B et al (2020) Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials. Energy Build 214:109846

    Google Scholar 

  259. Sommerhuber PF et al (2017) Life cycle assessment of wood-plastic composites: analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recycl 117:235–248

    Google Scholar 

  260. Mansor M et al (2019) The environmental impact of natural fiber composites through life cycle assessment analysis. In: durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 257–285

  261. Ferri M et al (2020) From winery waste to bioactive compounds and new polymeric biocomposites: a contribution to the circular economy concept. J Adv Res 24:1–11

    CAS  Google Scholar 

  262. Joshi SV et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35(3):371–376

    Google Scholar 

  263. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    CAS  Google Scholar 

  264. Mohanty A et al (2005) Natural fibers, biopolymers and biocomposite: an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 1–31

    Google Scholar 

  265. Ferreira DP, Cruz J, Fangueiro R (2019) Surface modification of natural fibers in polymer composites. In: green composites for automotive applications. Woodhead Publishing, Duxford, UK, pp 3–41

  266. Sanyang ML et al (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549

    CAS  Google Scholar 

  267. Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA (2019) Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 208:785–794

    CAS  Google Scholar 

  268. Europe P (2015) An analysis of European plastics production, demand and waste data. Plastics–the facts

  269. Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sustain Energy Rev 71:555–562

    CAS  Google Scholar 

  270. Market FA, Formic Acid Market: Types by Application & Region - Forecast 2017–2022. 2020 [cited 2020 26th December], https://www.researchandmarkets.com/reports/4425311/formic-acid-market-types-by-application-and

  271. Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos Part B 193:108053

    CAS  Google Scholar 

  272. Reinders MJ, Onwezen MC, Meeusen MJ (2017) Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands. J Clean Prod 162:1169–1179

    Google Scholar 

  273. Townsend T (2020) World natural fibre production and employment. In: handbook of natural fibres. Woodhead Publishing, Duxford, UK, pp 15–36

Download references

Acknowledgements

The authors wish to thank Chinese Academy of Science (CAS) and The World Academy of Science (TWAS) for providing financial support by means of 2016 CAS-TWAS President Fellowship Program (No. 2016CTF049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sakil Mahmud or Ruoyu Zhang.

Ethics declarations

Conflict of interest

The authors are declaring no conflict of interest for this review work.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, S., Hasan, K.M.F., Jahid, M.A. et al. Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56, 7231–7264 (2021). https://doi.org/10.1007/s10853-021-05774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05774-9

Navigation