Skip to main content
Log in

A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the past few decades, due to the rapid development of industry and the rapid growth of population, emissions of pollutants to the environment have increased dramatically, and the demand for drinking water is also increasing. Water treatment is a matter of concern because it is directly related to the health of humans and wildlife. Graphene and its derivatives have potential applications in seawater desalination and wastewater treatment due to their unique pore structure and ionic molecular sieving separation capabilities. Graphene, graphene oxide (GO), and reduced graphene oxide (rGO) can be formulated into nanoporous materials and composites with tunable properties that can be optimized for water filtration. Methods for perforating graphene include ion etching/ion bombardment and electron beam nanometer engraving, which are briefly introduced in this paper. Graphene-based composites further expand the capabilities of graphene in seawater desalination and wastewater treatment, by introducing new features and properties. In this review, the performance improvement of graphene-based separation membranes in decontamination and desalination in recent years is reviewed in detail. This review focuses on improving the performance of graphene-based membranes for separation, decontamination, and seawater desalination applications, by discussing how various modifications and preparation methods impact important performance properties, including water permeance, selectivity, rejection of solutes, membrane mechanical strength, and antifouling characteristics. We also discuss the outlook for future development of graphene-based membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Liu G, Jin W, Xu N (2016) Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew Chem Int Ed 55(43):13384–13397. https://doi.org/10.1002/anie.201600438

    Article  CAS  Google Scholar 

  2. Kim J, Cote LJ, Huang J (2012) Two dimensional soft material: new faces of graphene oxide. Acc Chem Res 45(8):1356–1364. https://doi.org/10.1021/ar300047s

    Article  CAS  Google Scholar 

  3. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  4. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  5. Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44(15):5016–5030. https://doi.org/10.1039/c4cs00423j

    Article  CAS  Google Scholar 

  6. Yang G, Xie ZL, Cran M, Ng D, Easton CD, Ding MM, Xu H, Gray S (2019) Functionalizing graphene oxide framework membranes with sulfonic acid groups for superior aqueous mixture separation. J Mater Chem A 7(34):19682–19690. https://doi.org/10.1039/c9ta04031e

    Article  CAS  Google Scholar 

  7. Padmavathy N, Behera SS, Pathan S, Das Ghosh L, Bose S (2019) Interlocked Graphene Oxide Provides Narrow Channels for Effective Water Desalination through Forward Osmosis. ACS Appl Mater Interfaces 11(7):7566–7575. https://doi.org/10.1021/acsami.8b20598

    Article  CAS  Google Scholar 

  8. Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676):380–383. https://doi.org/10.1038/nature24044

    Article  CAS  Google Scholar 

  9. Du Y, Zhang X, Yang J, Lv Y, Zhang C, Xu Z-K (2020) Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. J Membr Sci 595:117586. https://doi.org/10.1016/j.memsci.2019.117586

    Article  CAS  Google Scholar 

  10. Li Y, Zhao W, Weyland M, Yuan S, Xia Y, Liu H, Jian M, Yang J, Easton CD, Selomulya C, Zhang X (2019) Thermally reduced nanoporous graphene oxide membrane for desalination. Environ Sci Technol 53(14):8314–8323. https://doi.org/10.1021/acs.est.9b01914

    Article  CAS  Google Scholar 

  11. Dong YP, Lin C, Gao SJ, Manoranjan N, Li WX, Fang WX, Jin J (2020) Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. J Membr Sci 607:118184. https://doi.org/10.1016/j.memsci.2020.118184

    Article  CAS  Google Scholar 

  12. Cha-Umpong W, Hosseini E, Razmjou A, Zakertabrizi M, Korayem AH, Chen V (2020) New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J Membr Sci 598:117687. https://doi.org/10.1016/j.memsci.2019.117687

    Article  CAS  Google Scholar 

  13. Mao Y, Huang Q, Meng B, Zhou K, Liu G, Gugliuzza A, Drioli E, Jin W (2020) Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. J Membr Sci 611:118364. https://doi.org/10.1016/j.memsci.2020.118364

    Article  CAS  Google Scholar 

  14. Cheng MM, Huang LJ, Wang YX, Zhao YC, Tang JG, Wang Y, Zhang Y, Hedayati M, Kipper MJ, Wickramasinghe SR (2019) Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J Mater Sci 54(1):252–264. https://doi.org/10.1007/s10853-018-2828-9

    Article  CAS  Google Scholar 

  15. Li J, Hu M, Pei H, Ma X, Yan F, Dlamini DS, Cui Z, He B, Li J, Matsuyama H (2020) Improved water permeability and structural stability in a polysulfone-grafted graphene oxide composite membrane used for dye separation. J Membr Sci 595:117547. https://doi.org/10.1016/j.memsci.2019.117547

    Article  CAS  Google Scholar 

  16. Xu Y, Peng G, Liao J, Shen J, Gao C (2020) Preparation of molecular selective GO/DTiO2-PDA-PEI composite nanofiltration membrane for highly pure dye separation. J Membr Sci 601:117727. https://doi.org/10.1016/j.memsci.2019.117727

    Article  CAS  Google Scholar 

  17. Cheng M-m, Huang L-j, Wang Y-x, Tang J-g, Wang Y, Zhao Y-c, Liu G-f, Zhang Y, Kipper MJ, Wickramasinghe SR (2018) Reduced graphene oxide–gold nanoparticle membrane for water purification. Sep Sci Technol 54(6):1079–1085. https://doi.org/10.1080/01496395.2018.1525400

    Article  CAS  Google Scholar 

  18. Zhang Y, Huang LJ, Wang YX, Tang JG, Wang Y, Cheng MM, Du YC, Yang K, Kipper MJ, Hedayati M (2019) The preparation and study of ethylene glycol-modified graphene oxide membranes for water purification. Polymers (Basel) 11(2):188. https://doi.org/10.3390/polym11020188

    Article  CAS  Google Scholar 

  19. Lin H, Li Y, Zhu J (2020) Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J Membr Sci 598:117789. https://doi.org/10.1016/j.memsci.2019.117789

    Article  CAS  Google Scholar 

  20. Alammar A, Park SH, Williams CJ, Derby B, Szekely G (2020) Oil -in -water separation with graphene-based nanocomposite membranes for produced water treatment. J Membr Sci, 603https://doi.org/10.1016/j.memsci.2020.118007

  21. Li F, Yu Z, Shi H, Yang Q, Chen Q, Pan Y, Zeng G, Yan L (2017) A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem Eng J 322:33–45. https://doi.org/10.1016/j.cej.2017.03.145

    Article  CAS  Google Scholar 

  22. Shao L, Yu Z, Li X, Zeng H, Liu Y (2019) One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation. Appl Clay Sci 181:105208. https://doi.org/10.1016/j.clay.2019.105208

    Article  CAS  Google Scholar 

  23. Kim HW, Yoon HW, Yoon S-M, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi J-Y, Park HB (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342(6154):91. https://doi.org/10.1126/science.1236098

    Article  CAS  Google Scholar 

  24. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH (2019) Graphene-based membranes for CO2 separation. Mater Sci Energy Technol 2(1):83–88. https://doi.org/10.1016/j.mset.2018.11.002

    Article  Google Scholar 

  25. Jin X, Foller T, Wen X, Ghasemian MB, Wang F, Zhang M, Bustamante H, Sahajwalla V, Kumar P, Kim H, Lee G-H, Kalantar-Zadeh K, Joshi R (2020) Effective separation of CO2 using metal-incorporated rGO membranes. Adv Mater 32(17):1907580. https://doi.org/10.1002/adma.201907580

    Article  CAS  Google Scholar 

  26. Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D (2016) Facile preparation of graphene oxide membranes for gas separation. Chem Mater 28(9):2921–2927. https://doi.org/10.1021/acs.chemmater.5b04475

    Article  CAS  Google Scholar 

  27. Lee W-C, Bondaz L, Huang S, He G, Dakhchoune M, Agrawal KV (2021) Centimeter-scale gas-sieving nanoporous single-layer graphene membrane. J Membr Sci 618:118745. https://doi.org/10.1016/j.memsci.2020.118745

    Article  CAS  Google Scholar 

  28. Zhao Y-c, Huang L-j, Wang Y-x, Tang J-g, Wang Y, Liu J-x, Belfiore LA, Kipper MJ (2016) Synthesis of graphene oxide/rare-earth complex hybrid luminescent materials via π-π stacking and their pH-dependent luminescence. J Alloy Compd 687:95–103. https://doi.org/10.1016/j.jallcom.2016.06.100

    Article  CAS  Google Scholar 

  29. Y-x WANG, L-j HUANG, J-g TANG, WANG Y, LIU J-x, (2018) Surface modification and mechanism research of amorphous Mg-Ni-La hydrogen storage alloy with graphene/Ag nanocomposite. Chinese J Nonferrous Metals 3:9

    Google Scholar 

  30. Huang LJ, Wang YX, Tang JG, Zhao YC, Liu GF, Wang Y, Liu JX, Jiao JQ, Wang W, Jin B, Belfiore LA, Kipper MJ (2017) Graphene/silver nanocomposites stabilize Mg-Ni-La electrode alloys and enhance electrochemical performance. J Alloy Compd 694:1140–1148. https://doi.org/10.1016/j.jallcom.2016.10.068

    Article  CAS  Google Scholar 

  31. Shen W, Zhao G, Zhang X, Bu F, Yun J, Tang J (2020) Using dual microresonant cavity and plasmonic effects to enhance the photovoltaic efficiency of flexible polymer solar cells. Nanomaterials (Basel) 10 (5). doi:https://doi.org/10.3390/nano10050944

  32. Mi B, Zheng S, Tu Q (2018) 2D graphene oxide channel for water transport. Faraday Discuss 209:329–340. https://doi.org/10.1039/c8fd00026c

    Article  CAS  Google Scholar 

  33. Yang K, Huang LJ, Wang YX, Du YC, Zhang ZJ, Wang Y, Kipper MJ, Belfiore LA, Tang JG (2020) Graphene oxide nanofiltration membranes containing silver nanoparticles: tuning separation efficiency via nanoparticle size. Nanomaterials (Basel) 10(3):454. https://doi.org/10.3390/nano10030454

    Article  CAS  Google Scholar 

  34. Du YC, Huang LJ, Wang YX, Yang K, Zhang ZJ, Wang Y, Kipper MJ, Belfiore LA, Tang JG (2020) Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment. J Mater Sci 55(25):11188–11202. https://doi.org/10.1007/s10853-020-04774-5

    Article  CAS  Google Scholar 

  35. Liu GF, Huang LJ, Wang YX, Tang JG, Wang Y, Cheng MM, Zhang Y, Kipper MJ, Belfiore LA, Ranil WS (2017) Preparation of a graphene/silver hybrid membrane as a new nanofiltration membrane. Rsc Advances 7(77):49159–49165. https://doi.org/10.1039/c7ra07904d

    Article  CAS  Google Scholar 

  36. Kang H, Shi J, Liu LY, Shan MJ, Xu ZW, Li N, Li J, Lv HM, Qian XM, Zhao LH (2018) Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes. Appl Surf Sci 428:990–999. https://doi.org/10.1016/j.apsusc.2017.09.212

    Article  CAS  Google Scholar 

  37. Liu H, Zhu J, Hao L, Jiang Y, van der Bruggen B, Sotto A, Gao C, Shen J (2019) Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. J Membr Sci 587:117163. https://doi.org/10.1016/j.memsci.2019.06.003

    Article  CAS  Google Scholar 

  38. Abdelkader BA, Antar MA, Laoui T, Khan Z (2019) Development of graphene oxide-based membrane as a pretreatment for thermal seawater desalination. Desalination 465:13–24. https://doi.org/10.1016/j.desal.2019.04.028

    Article  CAS  Google Scholar 

  39. Yang K, Huang LJ, Wang YX, Du YC, Tang JG, Wang Y, Cheng MM, Zhang Y, Kipper MJ, Belfiore LA, Wickramasinghe SR (2019) Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. New J Chem 43(7):2846–2860. https://doi.org/10.1039/c8nj06045b

    Article  CAS  Google Scholar 

  40. Du Y-C, Huang L-J, Wang Y-X, Yang K, Tang J-G, Wang Y, Cheng M-M, Zhang Y, Kipper MJ, Belfiore LA, Ranil WS (2019) Recent developments in graphene-based polymer composite membranes: Preparation, mass transfer mechanism, and applications. J Appl Polym Sci 136(28):47761. https://doi.org/10.1002/app.47761

    Article  CAS  Google Scholar 

  41. Zhang Z, Huang L, Wang Y, Yang K, Du Y, Wang Y, Kipper MJ, Belfiore LA, Tang J (2020) Theory and simulation developments of confined mass transport through graphene-based separation membranes. Phys Chem Chem Phys 22(11):6032–6057. https://doi.org/10.1039/c9cp05551g

    Article  CAS  Google Scholar 

  42. Cheng MM, Huang LJ, Wang YX, Tang JG, Wang Y, Zhao YC, Liu GF, Zhang Y, Kipper MJ, Belfiore LA, Ranil WS (2017) Recent developments in graphene-based/nanometal composite filter membranes. Rsc Advances 7(76):47886–47897. https://doi.org/10.1039/c7ra08098k

    Article  CAS  Google Scholar 

  43. Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10(5):459–464. https://doi.org/10.1038/nnano.2015.37

    Article  CAS  Google Scholar 

  44. Jiang Y, Biswas P, Fortner JD (2016) A review of recent developments in graphene-enabled membranes for water treatment. Environ Sci-Water Res Technol 2(6):915–922. https://doi.org/10.1039/c6ew00187d

    Article  CAS  Google Scholar 

  45. Zhou KQ, Shi YQ, Jiang SH, Song L, Hu Y, Gui Z (2013) A facile liquid phase exfoliation method to prepare graphene sheets with different sizes expandable graphite. Mater Res Bull 48(9):2985–2992. https://doi.org/10.1016/j.materresbull.2013.04.016

    Article  CAS  Google Scholar 

  46. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589. https://doi.org/10.1016/S1369-7021(13)70014-2

    Article  CAS  Google Scholar 

  47. Sutter P (2009) Epitaxial graphene: How silicon leaves the scene. Nat Mater 8(3):171–172. https://doi.org/10.1038/nmat2392

    Article  CAS  Google Scholar 

  48. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876. https://doi.org/10.1038/nature07872

    Article  CAS  Google Scholar 

  49. Surana K, Singh PK, Bhattacharya B, Verma CS, Mehra RM (2015) Synthesis of graphene oxide coated Nafion membrane for actuator application. Ceram Int 41(3):5093–5099. https://doi.org/10.1016/j.ceramint.2014.12.080

    Article  CAS  Google Scholar 

  50. Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272. https://doi.org/10.1021/nl902515k

    Article  CAS  Google Scholar 

  51. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2013) Correction to toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 7(1):875–875. https://doi.org/10.1021/nn3057142

    Article  CAS  Google Scholar 

  52. Xue C, Wang X, Zhu WY, Han Q, Zhu CH, Hong JL, Zhou XM, Jiang HJ (2014) Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles. Sensors and Actuators B-Chemical 196:57–63. https://doi.org/10.1016/j.snb.2014.01.100

    Article  CAS  Google Scholar 

  53. Song N, Gao XL, Ma Z, Wang XJ, Wei Y, Gao CJ (2018) A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination 437:59–72. https://doi.org/10.1016/j.desal.2018.02.024

    Article  CAS  Google Scholar 

  54. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  Google Scholar 

  55. O’Hern SC, Boutilier MS, Idrobo JC, Song Y, Kong J, Laoui T, Atieh M, Karnik R (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14(3):1234–1241. https://doi.org/10.1021/nl404118f

    Article  CAS  Google Scholar 

  56. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194. https://doi.org/10.1038/nnano.2010.8

    Article  CAS  Google Scholar 

  57. Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye JI, Lee C, Park HG (2014) Ultimate permeation across atomically thin porous graphene. Science 344(6181):289–292. https://doi.org/10.1126/science.1249097

    Article  CAS  Google Scholar 

  58. Fischbein MD, Drndic M (2008) Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters 93 (11). doi: https://doi.org/10.1063/1.2980518, Artn 113107

  59. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson AT, Drndic M (2010) DNA translocation through graphene nanopores. Nano Lett 10(8):2915–2921. https://doi.org/10.1021/nl101046t

    Article  CAS  Google Scholar 

  60. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6):711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  61. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47(8):3715–3723. https://doi.org/10.1021/es400571g

    Article  CAS  Google Scholar 

  62. Tsou CH, An QF, Lo SC, De Guzman M, Hung WS, Hu CC, Lee KR, Lai JY (2015) Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 477:93–100. https://doi.org/10.1016/j.memsci.2014.12.039

    Article  CAS  Google Scholar 

  63. Kulkarni DD, Choi I, Singamaneni SS, Tsukruk VV (2010) Graphene Oxide−Polyelectrolyte Nanomembranes. ACS Nano 4(8):4667–4676. https://doi.org/10.1021/nn101204d

    Article  CAS  Google Scholar 

  64. Cote LJ, Kim F, Huang J (2009) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131(3):1043–1049. https://doi.org/10.1021/ja806262m

    Article  CAS  Google Scholar 

  65. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542. https://doi.org/10.1038/nnano.2008.210

    Article  CAS  Google Scholar 

  66. Zhong J, Sun W, Wei Q, Qian X, Cheng HM, Ren W (2018) Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat Commun 9(1):3484. https://doi.org/10.1038/s41467-018-05723-2

    Article  CAS  Google Scholar 

  67. Su Y, Kravets VG, Wong SL, Waters J, Geim AK, Nair RR (2014) Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat Commun 5:4843. https://doi.org/10.1038/ncomms5843

    Article  CAS  Google Scholar 

  68. Kulkarni HB, Tambe P, Joshi GM (2018) Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Composite Interfaces 25(5–7):381–414. https://doi.org/10.1080/09276440.2017.1361711

    Article  CAS  Google Scholar 

  69. Zhang P, Gong J-L, Zeng G-M, Deng C-H, Yang H-C, Liu H-Y, Huan S-Y (2017) Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem Eng J 322:657–666. https://doi.org/10.1016/j.cej.2017.04.068

    Article  CAS  Google Scholar 

  70. Zhu L, Swihart MT, Lin H (2017) Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. J Mater Chem A 5(37):19914–19923. https://doi.org/10.1039/C7TA03874G

    Article  CAS  Google Scholar 

  71. Kita H, Inada T, Tanaka K, Okamoto K-i (1994) Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide. J Membr Sci 87(1):139–147. https://doi.org/10.1016/0376-7388(93)E0098-X

    Article  CAS  Google Scholar 

  72. Thayumanavan N, Tambe P, Joshi G (2015) Effect of surfactant and sodium alginate modification of graphene on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Cell Chem Technol 49(1):69–80

    CAS  Google Scholar 

  73. Lei W-W, Li H, Shi L-Y, Diao Y-F, Zhang Y-L, Ran R, Ni W (2017) Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane. Appl Surf Sci 404:230–237. https://doi.org/10.1016/j.apsusc.2017.01.292

    Article  CAS  Google Scholar 

  74. Prince JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G (2016) Ultra-wetting graphene-based membrane. J Membr Sci 500:76–85. https://doi.org/10.1016/j.memsci.2015.11.024

    Article  CAS  Google Scholar 

  75. Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H (2013) Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano 7(1):428–437. https://doi.org/10.1021/nn304471w

    Article  CAS  Google Scholar 

  76. Jin LM, Wang ZY, Zheng SX, Mi BX (2018) Polyamide-crosslinked graphene oxide membrane for forward osmosis. J Membr Sci 545:11–18. https://doi.org/10.1016/j.memsci.2017.09.023

    Article  CAS  Google Scholar 

  77. Rezac ME, Todd Sorensen E, Beckham HW (1997) Transport properties of crosslinkable polyimide blends. J Membr Sci 136(1):249–259. https://doi.org/10.1016/S0376-7388(97)00170-1

    Article  CAS  Google Scholar 

  78. Alam S, Kandpal LD, Varma IK (1993) Ethynyl-Terminated Imide Oligomers. J Macromolecular Sci, Part C 33(3):291–320. https://doi.org/10.1080/15321799308021438

    Article  Google Scholar 

  79. Sefcik MD, Stejskal EO, McKay RA, Schaefer J (1979) Investigation of the structure of acetylene-terminated polyimide resins using magic-angle Carbon-13 nuclear magnetic resonance. Macromolecules 12(3):423–425. https://doi.org/10.1021/ma60069a015

    Article  CAS  Google Scholar 

  80. Yang E, Karahan HE, Goh K, Chuah CY, Wang R, Bae TH (2019) Scalable fabrication of graphene-based laminate membranes for liquid and gas separations by crosslinking-induced gelation and doctor-blade casting. Carbon 155:129–137. https://doi.org/10.1016/j.carbon.2019.08.058

    Article  CAS  Google Scholar 

  81. Liu JC, Yu LJ, Yue GC, Wang N, Cui ZM, Hou LL, Li JH, Li QZ, Karton A, Cheng QF, Jiang L, Zhao Y (2019) Thermoresponsive Graphene Membranes with Reversible Gating Regularity for Smart Fluid Control. Advanced Functional Materials 29 (12). doi:https://doi.org/10.1002/adfm.201808501

  82. Li W, Zhang Y, Su P, Xu Z, Zhang G, Shen C, Meng Q (2016) Metal–organic framework channelled graphene composite membranes for H2/CO2separation. J Mater Chem A 4(48):18747–18752. https://doi.org/10.1039/c6ta09362k

    Article  CAS  Google Scholar 

  83. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 335(6067):442. https://doi.org/10.1126/science.1211694

    Article  CAS  Google Scholar 

  84. El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NAM (2015) TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64. https://doi.org/10.1016/j.desal.2015.01.033

    Article  CAS  Google Scholar 

  85. Sui D, Huang Y, Huang L, Liang J, Ma Y, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7(22):3186–3192. https://doi.org/10.1002/smll.201101305

    Article  CAS  Google Scholar 

  86. Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q (2014) Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem Commun (Camb) 50(86):13089–13092. https://doi.org/10.1039/c4cc05295a

    Article  CAS  Google Scholar 

  87. Gao SJ, Qin HL, Liu PP, Jin J (2015) SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. J Mater Chem A 3(12):6649–6654. https://doi.org/10.1039/c5ta00366k

    Article  CAS  Google Scholar 

  88. Zhang L, Shi Y, Wang L, Hu C (2018) AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light. Appl Catal B 220:118–125. https://doi.org/10.1016/j.apcatb.2017.08.038

    Article  CAS  Google Scholar 

  89. Ranjith KS, Manivel P, Rajendrakumar RT, Uyar T (2017) Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem Eng J 325:588–600. https://doi.org/10.1016/j.cej.2017.05.105

    Article  CAS  Google Scholar 

  90. Nguyen DCT, Oh WC (2018) Ternary self-assembly method of mesoporous silica and Cu2O combined graphene composite by nonionic surfactant and photocatalytic degradation of cationic-anionic dye pollutants. Sep Purif Technol 190:77–89. https://doi.org/10.1016/j.seppur.2017.08.054

    Article  CAS  Google Scholar 

  91. Jiang YQ, Chowdhury S, Balasubramanian R (2017) Nitrogen-doped graphene hydrogels as potential adsorbents and photocatalysts for environmental remediation. Chem Eng J 327:751–763. https://doi.org/10.1016/j.cej.2017.06.156

    Article  CAS  Google Scholar 

  92. Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep Purif Technol 154:96–107. https://doi.org/10.1016/j.seppur.2015.09.039

    Article  CAS  Google Scholar 

  93. Safarpour M, Khataee A, Vatanpour V (2015) Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Membr Sci 489:43–54. https://doi.org/10.1016/j.memsci.2015.04.010

    Article  CAS  Google Scholar 

  94. Guan KC, Zhao D, Zhang MC, Shen J, Zhou GY, Liu GP, Jin WQ (2017) 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J Membr Sci 542:41–51. https://doi.org/10.1016/j.memsci.2017.07.055

    Article  CAS  Google Scholar 

  95. Chen X, Qiu M, Ding H, Fu K, Fan Y (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8(10):5696–5705. https://doi.org/10.1039/c5nr08697c

    Article  CAS  Google Scholar 

  96. Yuan X, Li W, Liu H, Han N, Zhang X (2016) A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation. Composites Communications 2:5–8. https://doi.org/10.1016/j.coco.2016.10.001

    Article  Google Scholar 

  97. Madauß L, Schumacher J, Ghosh M, Ochedowski O, Meyer J, Lebius H, Ban-d’Etat B, Toimil-Molares ME, Trautmann C, Lammertink RGH, Ulbricht M, Schleberger M (2017) Fabrication of nanoporous graphene/polymer composite membranes. Nanoscale 9(29):10487–10493. https://doi.org/10.1039/C7NR02755A

    Article  Google Scholar 

  98. Hung W-S, Lin T-J, Chiao Y-H, Sengupta A, Hsiao Y-C, Wickramasinghe SR, Hu C-C, Lee K-R, Lai J-Y (2018) Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J Mater Chem A 6(40):19445–19454. https://doi.org/10.1039/C8TA08155G

    Article  CAS  Google Scholar 

  99. Thakur AK, Singh SP, Kleinberg MN, Gupta A, Arnusch CJ (2019) Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Appl Mater Interfaces 11(11):10914–10921. https://doi.org/10.1021/acsami.9b00510

    Article  CAS  Google Scholar 

  100. Yin J, Zhu GC, Deng BL (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379:93–101. https://doi.org/10.1016/j.desal.2015.11.001

    Article  CAS  Google Scholar 

  101. Zhu JY, Tian MM, Hou JW, Wang J, Lin JY, Zhang YT, Liu JD, Van der Bruggen B (2016) Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A 4(5):1980–1990. https://doi.org/10.1039/c5ta08024j

    Article  CAS  Google Scholar 

  102. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K (2016) Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment. ACS Appl Mater Interfaces 8(9):6211–6218. https://doi.org/10.1021/acsami.5b12723

    Article  CAS  Google Scholar 

  103. Lai GS, Lau WJ, Goh PS, Ismail AF, Yusof N, Tan YH (2016) Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387:14–24. https://doi.org/10.1016/j.desal.2016.03.007

    Article  CAS  Google Scholar 

  104. Wang J, Gao X, Wang J, Wei Y, Li Z, Gao C (2015) O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties. ACS Appl Mater Interfaces 7(7):4381–4389. https://doi.org/10.1021/am508903g

    Article  CAS  Google Scholar 

  105. Chae HR, Lee J, Lee CH, Kim IC, Park PK (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Membrane Sci 483(Complete):128–135. https://doi.org/10.1016/j.memsci.2015.02.045

    Article  CAS  Google Scholar 

  106. Yang HY, Wang NX, Wang L, Liu HX, An QF, Ji SL (2018) Vacuum-assisted assembly of ZIF-8@GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance. J Membr Sci 545:158–166. https://doi.org/10.1016/j.memsci.2017.09.074

    Article  CAS  Google Scholar 

  107. Wang C, Cheng P, Yao Y, Yamauchi Y, Yan X, Li J, Na J (2020) In-situ fabrication of nanoarchitectured MOF filter for water purification. J Hazard Mater 392:122164. https://doi.org/10.1016/j.jhazmat.2020.122164

    Article  CAS  Google Scholar 

  108. Zhao GK, Hu RR, Zhao XL, He YJ, Zhu HW (2019) High flux nanofiltration membranes prepared with a graphene oxide homo-structure. J Membr Sci 585:29–37. https://doi.org/10.1016/j.memsci.2019.05.028

    Article  CAS  Google Scholar 

  109. Fan XF, Liu YM, Quan X (2019) A novel reduced graphene oxide/carbon nanotube hollow fiber membrane with high forward osmosis performance. Desalination 451:117–124. https://doi.org/10.1016/j.desal.2018.07.020

    Article  CAS  Google Scholar 

  110. Cheng P, Chen Y, Gu YH, Yan X, Lang WZ (2019) Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving.J Membr Sci, 591 https://doi.org/10.1016/j.memsci.2019.117308

  111. Dong L, Li M, Zhang S, Si X, Bai Y, Zhang C (2020) NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination 476:114227. https://doi.org/10.1016/j.desal.2019.114227

    Article  CAS  Google Scholar 

  112. Liu X, Demir NK, Wu Z, Li K (2015) highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 137(22):6999–7002. https://doi.org/10.1021/jacs.5b02276

    Article  CAS  Google Scholar 

  113. Li W, Li J, Wang N, Li X, Zhang Y, Ye Q, Ji S, An Q-F (2020) Recovery of bio-butanol from aqueous solution with ZIF-8 modified graphene oxide composite membrane. J Membr Sci 598:117671. https://doi.org/10.1016/j.memsci.2019.117671

    Article  CAS  Google Scholar 

  114. Bonakala S, Lalitha A, Shin JE, Moghadam F, Semino R, Park HB, Maurin G (2018) Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale. ACS Appl Mater Interfaces 10(39):33619–33629. https://doi.org/10.1021/acsami.8b09851

    Article  CAS  Google Scholar 

  115. Peng Y, Yu Z, Li F, Chen Q, Yin D, Min X (2018) A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: oil/water separation and cationic dyes removal. Sep Purif Technol 200:130–140. https://doi.org/10.1016/j.seppur.2018.01.059

    Article  CAS  Google Scholar 

  116. Han Y, Jiang YQ, Gao C (2015) High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl Mater Interfaces 7(15):8147–8155. https://doi.org/10.1021/acsami.5b00986

    Article  CAS  Google Scholar 

  117. Yuan XT, Xu CX, Geng HZ, Ji Q, Wang L, He B, Jiang Y, Kong J, Li J (2020) Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. J Hazard Mater 384:120978. https://doi.org/10.1016/j.jhazmat.2019.120978

    Article  CAS  Google Scholar 

  118. Zhan YQ, He SJ, Wan XY, Zhao SM, Bai YL (2018) Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J Membr Sci 567:76–88. https://doi.org/10.1016/j.memsci.2018.09.037

    Article  CAS  Google Scholar 

  119. Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004

    Article  CAS  Google Scholar 

  120. Liu YC, Tu WW, Chen MY, Ma LL, Yang B, Liang QL, Chen YY (2018) A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chem Eng J 336:263–277. https://doi.org/10.1016/j.cej.2017.12.043

    Article  CAS  Google Scholar 

  121. Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang SCE, Li JX, Matsuyama H (2020) Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability.J Membr Sci, 595https://doi.org/10.1016/j.memsci.2019.117598

  122. Ma J, Tang XD, He Y, Fan Y, Chen JY, Yu H (2020) Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability. Desalination 480:114328. https://doi.org/10.1016/j.desal.2020.114328

    Article  CAS  Google Scholar 

  123. Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550. https://doi.org/10.1038/nnano.2017.21

    Article  CAS  Google Scholar 

  124. Lecaros RLG, Mendoza GEJ, Hung WS, An QF, Caparanga AR, Tsai HA, Hu CC, Lee KR, Lai JY (2017) Tunable interlayer spacing of composite graphene oxide-framework membrane for acetic acid dehydration. Carbon 123:660–667. https://doi.org/10.1016/j.carbon.2017.08.019

    Article  CAS  Google Scholar 

  125. Sun JQ, Hu CZ, Liu ZT, Liu HJ, Qu JH (2019) Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 145:140–148. https://doi.org/10.1016/j.carbon.2018.12.098

    Article  CAS  Google Scholar 

  126. Chen L, Li YH, Chen LN, Li N, Dong CL, Chen Q, Liu BB, Ai Q, Si PC, Feng JK, Zhang L, Suhr J, Lou J, Ci LJ (2018) A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem Eng J 345:536–544. https://doi.org/10.1016/j.cej.2018.03.136

    Article  CAS  Google Scholar 

  127. Liu YC, Yu ZX, Peng YX, Shao LY, Li XH, Zeng HJ (2020) A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane.Chem Phys Lett, 749https://doi.org/10.1016/j.cplett.2020.137424

  128. Hou JK, Chen YB, Shi WX, Bao CL, Hu XY (2020) Graphene oxide/methylene blue composite membrane for dyes separation: Formation mechanism and separation performance. Appl Surf Sci, 505https://doi.org/10.1016/j.apsusc.2019.144145

  129. Shen HP, Wang NX, Ma K, Wang L, Chen G, Ji SL (2017) Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance. J Membr Sci 527:43–50. https://doi.org/10.1016/j.memsci.2017.01.003

    Article  CAS  Google Scholar 

  130. Chang YH, Shen YD, Kong DB, Ning J, Xiao ZC, Liang JX, Zhi LJ (2017) Fabrication of the reduced preoxidized graphene-based nanofiltration membranes with tunable porosity and good performance. Rsc Advances 7(5):2544–2549. https://doi.org/10.1039/c6ra24746f

    Article  CAS  Google Scholar 

  131. Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94–102. https://doi.org/10.1016/j.memsci.2013.09.018

    Article  CAS  Google Scholar 

  132. Lattemann S, Hopner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220(1–3):1–15. https://doi.org/10.1016/j.desal.2007.03.009

    Article  CAS  Google Scholar 

  133. Bartels C, Franks R, Rybar S, Schierach M, Wilf M (2005) The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184(1–3):185–195. https://doi.org/10.1016/j.desal.2005.04.032

    Article  CAS  Google Scholar 

  134. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M (2004) A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170(3):281–308. https://doi.org/10.1016/j.desal.2004.01.007

    Article  CAS  Google Scholar 

  135. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res 43(9):2317–2348. https://doi.org/10.1016/j.watres.2009.03.010

    Article  CAS  Google Scholar 

  136. Fang YY, Bian LX, Bi QY, Li Q, Wang XL (2014) Evaluation of the pore size distribution of a forward osmosis membrane in three different ways. J Membr Sci 454:390–397. https://doi.org/10.1016/j.memsci.2013.12.046

    Article  CAS  Google Scholar 

  137. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: Recent advances and future prospects. Desalination 356:226–254. https://doi.org/10.1016/j.desal.2014.10.043

    Article  CAS  Google Scholar 

  138. You Y, Sahajwalla V, Yoshimura M, Joshi RK (2016) Graphene and graphene oxide for desalination. Nanoscale 8(1):117–119. https://doi.org/10.1039/c5nr06154g

    Article  CAS  Google Scholar 

  139. Yuan YQ, Gao XL, Wei Y, Wang XY, Wang J, Zhang YS, Gao CJ (2017) Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination 405:29–39. https://doi.org/10.1016/j.desal.2016.11.024

    Article  CAS  Google Scholar 

  140. Sheath P, Majumder M (2016) Flux accentuation and improved rejection in graphene-based filtration membranes produced by capillary-force-assisted self-assembly. Philos Trans A Math Phys Eng Sci 374 (2060). doi:https://doi.org/10.1098/rsta.2015.0028

  141. Zhu LP, Wang HX, Bai J, Liu JD, Zhang YT (2017) A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination. Desalination 420:145–157. https://doi.org/10.1016/j.desal.2017.07.008

    Article  CAS  Google Scholar 

  142. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288. https://doi.org/10.1016/j.desal.2010.04.069

    Article  CAS  Google Scholar 

  143. Li YJ, Shi SY, Gao HB, Zhao ZJ, Su CL, Wen H (2018) Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA). J Membr Sci 566:44–53. https://doi.org/10.1016/j.memsci.2018.08.054

    Article  CAS  Google Scholar 

  144. Mikhaylin S, Bazinet L (2016) Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv Colloid Interface Sci 229:34–56. https://doi.org/10.1016/j.cis.2015.12.006

    Article  CAS  Google Scholar 

  145. Karkooti A, Yazdi AZ, Chen P, McGregor M, Nazemifard N, Sadrzadeh M (2018) Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment. J Membr Sci 560:97–107. https://doi.org/10.1016/j.memsci.2018.04.034

    Article  CAS  Google Scholar 

  146. Wang X, Wang HX, Wang YM, Gao J, Liu JD, Zhang YT (2019) Hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination. Desalination 451:209–218. https://doi.org/10.1016/j.desal.2017.05.012

    Article  CAS  Google Scholar 

  147. Sun JW, Qian XW, Wang ZH, Zeng FX, Bai HC, Li N (2020) Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation. J Membr Sci, 599https://doi.org/10.1016/j.memsci.2020.117838

  148. Wei Y, Zhang YS, Gao XL, Yuan YQ, Su BW, Gao CJ (2016) Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108:568–575. https://doi.org/10.1016/j.carbon.2016.07.056

    Article  CAS  Google Scholar 

  149. Ganesh BM, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313:199–207. https://doi.org/10.1016/j.desal.2012.11.037

    Article  CAS  Google Scholar 

  150. Qian YL, Zhou C, Huang AS (2018) Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes. Carbon 136:28–37. https://doi.org/10.1016/j.carbon.2018.04.062

    Article  CAS  Google Scholar 

  151. Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N (2019) Controllable ion transport by surface-charged graphene oxide membrane. Nat Commun 10(1):1253. https://doi.org/10.1038/s41467-019-09286-8

    Article  CAS  Google Scholar 

  152. Zhang P, Gong J-L, Zeng G-M, Song B, Cao W, Liu H-Y, Huan S-Y, Peng P (2019) Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. J Membr Sci 574:112–123. https://doi.org/10.1016/j.memsci.2018.12.046

    Article  CAS  Google Scholar 

  153. Xu YQ, Wu MY, Yu SY, Zhao Y, Gao CJ, Shen JN (2019) Ultrathin and stable graphene oxide film via intercalation polymerization of polydopamine for preparation of digital inkjet printing dye. J Membr Sci 586:15–22. https://doi.org/10.1016/j.memsci.2019.05.057

    Article  CAS  Google Scholar 

  154. Grasso G, Galiano F, Yoo MJ, Mancuso R, Park HB, Gabriele B, Figoli A, Drioli E (2020) Development of graphene-PVDF composite membranes for membrane distillation.J Membr Sci, 604https://doi.org/10.1016/j.memsci.2020.118017

  155. Zhang HJ, Li B, Pan JF, Qi YW, Shen JN, Gao CJ, Van der Bruggen B (2017) Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J Membr Sci 539:128–137. https://doi.org/10.1016/j.memsci.2017.05.075

    Article  CAS  Google Scholar 

  156. Xu SJ, Li F, Su BW, Hu MZ, Gao XL, Gao CJ (2019) Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination. Desalination 451:219–230. https://doi.org/10.1016/j.desal.2018.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the (1) Natural Scientific Foundation of China (Grant no. 51878361, 52070104, 51503112); Natural Scientific Foundation of Shandong Province (Grant No. ZR2019MEM048); (2) State Key Project of International Cooperation Research (2016YFE0110800, 2017YFE0108300); the National Program for Introducing Talents of Discipline to Universities (“111” plan); 1st class discipline program of Materials Science of Shandong Province, The Double-Hundred Foreign Expert Program of Shandong Province (2019–2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-jun Huang or Jian-guo Tang.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Zy., Huang, Lj., Qu, Hj. et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J Mater Sci 56, 9545–9574 (2021). https://doi.org/10.1007/s10853-021-05873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05873-7

Navigation