Skip to main content

Advertisement

Log in

Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The urgent requirement of environment-friendly materials with excellent energy storage performance for pulse power systems has sparked considerable research on lead-free ceramics. In this work, a new lead-free 0.90(0.80NaNbO3–0.20Sr0.7Bi0.2TiO3)–0.10BaSnO3 ceramic with high recoverable energy storage density (Wr = 3.51 J/cm3) and decent energy storage efficiency (η = 70.85%) has been obtained. In particular, these ceramics exhibit an ultrahigh breakdown strength of 402 kV/cm due to the dense microstructure and small grain size. The impedance analysis also reveals that the incorporation of BaSnO3 is conducive to the enhancement of insulation ability and breakdown strength. Additionally, great thermal stability (ΔWr < 10% over 20–120 °C at 200 kV/cm) and fatigue resistance (ΔWr < 1% after 120,000 electrical cycles at 200 kV/cm) are observed, indicating that the 0.90(0.80NaNbO3–0.20Sr0.7Bi0.2TiO3)–0.10BaSnO3 ceramics have promising application prospect for high-temperature energy storage devices in pulse power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J, Zhang S (2018) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102

  2. Wang H, Liu Y, Yang T, Zhang S (2019) Ultrahigh energy-storage density in anti-ferroelectric ceramics with field-induced multiphase transitions. Adv Funct Mater 29:1807321

    Article  Google Scholar 

  3. Jaffe B (1961) Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element. Proc IRE 49:1264–1267

    Article  Google Scholar 

  4. Xu R, Li B, Tian J, Xu Z, Feng Y, Wei X, Huang D, Yang L (2017) Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 anti-ferroelectric bulk ceramics for pulsed capacitors with high energy and power density. Appl Phys Lett 110:142904

  5. Chen X, Zhang H, Cao F, Wang G, Dong X, Gu Y, He H, Liu Y (2009) Charge-discharge properties of lead zirconate stannate titanate ceramics. J Appl Phys 106:034105–034105

    Article  Google Scholar 

  6. Sawaguchi E, Kittaka T (1952) Anti-ferroelectricity and ferroelectricity in lead zirconate. J Phys Soc Jpn 7:336–337

    Article  CAS  Google Scholar 

  7. Sawaguchi E, Maniwa H, Hoshino S (1951) Anti-ferroelectric structure of lead zirconate. Phys Rex X 83:1078–1078

    Article  CAS  Google Scholar 

  8. Feng YJ, Xu Z, Yao X (2003) Effect of Sn doping on the phase transition behaviors of anti-ferroelectric lead zirconate titanate. Mat Sci Eng: B 99:499–501

    Article  Google Scholar 

  9. Ciuchi IV, Mitoseriu L, Galassi C (2016) Anti-ferroelectric to ferroelectric crossover and energy storage properties of (Pb1−xLax)(Zr0.90Ti0.10)1–x/4O3 (0.02 ≤ x ≤ 0.04) ceramics. J Am Ceram Soc 99:2382–2387

    Article  CAS  Google Scholar 

  10. Frederick J, Tan X, Jo W (2010) Strains and polarization during anti-ferroelectric–ferroelectric phase switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTiy]0.98O3 ceramics. J Am Ceram Soc 94:1149–1155

    Article  Google Scholar 

  11. Zhang M-H, Fulanović L, Egert S, Ding H, Groszewicz P, Kleebe H-J, Molina-Luna L, Koruza J (2020) Electric-field-induced anti-ferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Mater 200:127–135

    Article  CAS  Google Scholar 

  12. Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA (2015) Lead-free anti-ferroelectric: xCaZrO3-(1–x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton T 44:10763–10772

    Article  CAS  Google Scholar 

  13. Zuo R, Fu J, Qi H (2018) Stable anti-ferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics. Acta Mater 161:352–359

    Article  CAS  Google Scholar 

  14. Ye J, Wang G, Chen X, Cao F, Dong X (2019) Enhanced anti-ferroelectricity and double hysteresis loop observed in lead-free (1–x)NaNbO3-xCaSnO3 ceramics. Appl Phys Lett 114:122901

    Article  Google Scholar 

  15. Zhang M-H, Hadaeghi N, Egert S, Ding H, Zhang H, Groszewicz P, Buntkowsky G, Klein A, Koruza J, Wang R (2020) Design of lead-free anti-ferroelectric (1–x)NaNbO3-xSrSnO3 compositions guided by first-principles calculations. Chem Mater 33(1):266–274

    Article  Google Scholar 

  16. Liu Z, Lu J, Mao Y, Ren P, Fan H (2018) Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and anti-ferroelectric phases. J Eur Ceram Soc 38:4939–4945

    Article  CAS  Google Scholar 

  17. Qi H, Zuo R, Xie A, Fu J, Zhang D (2019) Excellent energy-storage properties of NaNbO3-based lead-free anti-ferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J Eur Ceram Soc 39:3703–3709

    Article  CAS  Google Scholar 

  18. Ye J, Wang G, Zhou M, Liu N, Chen X, Li S, Cao F, Dong X (2019) Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J Mater Chem C 7:5639–5645

    Article  CAS  Google Scholar 

  19. Qu N, Du H, Hao X (2019) A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J Mater Chem C 7:7993–8002

    Article  CAS  Google Scholar 

  20. Chen A, Yu Z (2002) Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J Appl Phys 91:1487–1494

    Article  CAS  Google Scholar 

  21. Upadhyay S, Parkash O, Kumar D (1997) Preparation and characterization of barium stannate BaSnO3. J Mater Sci Lett 16:1330–1332

    Article  CAS  Google Scholar 

  22. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  23. Song Z, Liu H, Hao H, Zhang S, Cao M, Yao Z, Wang Z, Hu W, Shi Y, Hu B (2015) The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics by varying grain sizes. IEEE Trans Ultrason Ferroelectr Freq Control 62:609–616

    Article  Google Scholar 

  24. Ye Y, Zhang S, Dogan F, Schamiloglu E, Gaudet J, Castro P, Roybal M, Joler M, Christodoulou C (2003) Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In: Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, 15–18 June 2003

  25. McPherson J, Kim J, Shanware A, Mogul H, Rodriguez J (2002) Proposed universal relationship between dielectric breakdown and dielectric constant. International Electron Devices Meeting. IEDM '02, pp 633–636

  26. Li X, Chen X, Zhou H, Sun J, Li X, Yan X, Liu G (2019) Phase evolution, microstructure, thermal stability and conductivity behavior of (Ba1-xBi0.67xK0.33x)(Ti1-xBi0.33xSn0.67x)O3 solid solutions ceramics. J Alloys Compd 777:1066–1073

    Article  CAS  Google Scholar 

  27. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Article  Google Scholar 

  28. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494

    Article  CAS  Google Scholar 

  29. Moos R, Härdtl KH (1996) Electronic transport properties of Sr1−xLaxTiO3 ceramics. J Appl Phys 80:393–400

    Article  CAS  Google Scholar 

  30. Peláiz-Barranco A, Guerra J D S, López-Noda R, Araújo E B (2008) Ionized oxygen vacancy-related electrical conductivity in (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 ceramics. J Phys D Appl Phys 41:215503

  31. Liu L, Huang Y, Li Y, Wu M, Fang L, Hu C, Wang Y (2012) Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3-0.05BaZrO3 ceramic. Physica B 407:136–139

    Article  CAS  Google Scholar 

  32. Xie A, Qi H, Zuo R (2020) Achieving remarkable amplification of energy-storage density in two-sstep sintered NaNbO3-SrTiO3 anti-ferroelectric capacitors through dual adjustment of local heterogeneity and grain gcale. ACS Appl Mater Interfaces 12:19467–19475

    Article  CAS  Google Scholar 

  33. Zhou M, Liang R, Zhou Z, Yan S, Dong X (2018) Novel sodium niobate-based lead-Free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain Chem Eng 6:12755–12765

    Article  CAS  Google Scholar 

  34. Bian JJ, Otonicar M, Spreitzer M, Vengust D, Suvorov D (2019) Structural evolution, dielectric and energy storage properties of Na(Nb1−xTax)O3 ceramics prepared by spark plasma sintering. J Eur Ceram Soc 39:2339–2347

    Article  CAS  Google Scholar 

  35. Zhou M, Liang R, Zhou Z, Dong X (2020) Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applications. Sustain Energ Fuels 4:1225–1233

    Article  CAS  Google Scholar 

  36. Tian A, Zuo R, Qi H, Shi M (2020) Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the anti-ferroelectric phase structure. J Mater Chem A 8:8352–8359

    Article  CAS  Google Scholar 

  37. Shi R, Pu Y, Wang W, Guo X, Li J, Yang M, Zhou S (2019) A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J Alloys Compd 815:152356

    Google Scholar 

  38. Lai D, Yao Z, You W, Gao B, Guo Q, Lu P, Ullah A, Hao H, Cao M, Liu H (2020) Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors. Ceram Int 46:13511–13516

    Article  CAS  Google Scholar 

  39. Fan Y, Zhou Z, Liang R, Dong X (2019) Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy. J Eur Ceram Soc 39:4770–4777

    Article  CAS  Google Scholar 

  40. Yang Z, Du H, Jin L, Hu Q, Qu S, Yang Z, Yu Y, Wei X, Xu Z (2019) A new family of sodium niobate-based dielectrics for electrical energy storage applications. J Eur Ceram Soc 39:2899–2907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC Nos. 51772238, 51701149, and 11272248). The CSS project (Grant No.YK2015-0602006), Shaanxi Province Science and Technology Innovation Team Project (2020TD-001) and the Fundamental research Funds for the Central Universities and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities. Besides, we thank Mr. Zijun Ren at Instrument Analysis Center of Xi'an Jiaotong University for their assistance with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Lou.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Shi, P., Zhu, X. et al. Enhanced energy storage properties in lead-free NaNbO3–Sr0.7Bi0.2TiO3–BaSnO3 ternary ceramic. J Mater Sci 56, 11922–11931 (2021). https://doi.org/10.1007/s10853-021-06075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06075-x

Navigation