Skip to main content
Log in

Toughening of epoxy resin systems using core–shell rubber particles: a literature review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Excellent thermal and mechanical properties and high chemical resistance with low shrinkage of epoxy resins open a wide window of various industrial applications, including coatings, paints, adhesive, etc. Despite their excellent properties, epoxy resins are brittle and have a low resistance to the initiation and growth of cracks. To overcome this drawback, different kinds of reinforcements, including liquid rubbers, core–shell rubber particles, dendritic polymers, block copolymers, thermoplastics, rigid particles, etc., have been used to improve the fracture toughness of epoxy resin systems. This paper briefly introduces each reinforcement separately and mainly presents an in-depth review of the progress of the last decade in the field of toughening of epoxy resins using core–shell rubber particles. This review paper also refers to the results of the research papers published on the effect these rubber particles on the mechanical properties of epoxy resins, as well as explains different toughening mechanisms of epoxy resins. Researchers first focused on the use of core–shell rubber particles containing different cores and shells. They then used core–shell rubber particles along with rigid fillers such as silica to offset the slight diminish in mechanical properties, as well as the glass transition temperature. In recent years, some research teams have used core–shell rubber particles and block copolymers simultaneously and have achieved fascinating results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

BCP:

Block copolymers

BR:

Butadiene rubber

CF:

Carbon fiber

CSR:

Core–shell rubber

DICY:

Dicyandiamide

EP:

Epoxy resin

f-PMMA:

Functionalized poly (methyl methacrylate)

G IC :

Fracture energy

GF:

Glass fiber

GO:

Graphene oxide

HBP:

Hyperbranched polymers

K IC :

Fracture toughness

LN2 :

Liquid nitrogen

MBN:

Modified boron nitride

MWCNT:

Multi-walled carbon nanotube

NBR:

Acrylonitrile butadiene rubber

NS:

Nanosilica

PBA:

Poly (butyl acrylate)

PMMA:

Poly (methyl methacrylate)

PPGm:

Chain-extended and epoxy-terminated poly(propylene glycol)

PS:

Difunctional epoxydised polysulfide

PSi:

Polysiloxane

PU:

Poly(polypropylene-glycol)-based polyurethane

RC:

Random copolymer

RT:

Room temperature

SBR:

Styrene–butadiene rubber

T g :

Glass transition temperature

TP:

Thermoplastic

References

  1. May CA (1988) Introduction to epoxy resins, epoxy resins chemistry and technology. Routledge, London, pp 1–8

    Google Scholar 

  2. Starkova O, Buschhorn S, Mannov E, Schulte K, Aniskevich A (2012) Creep and recovery of epoxy/MWCNT nanocomposites. Compos A Appl Sci Manuf 43(8):1212–1218

    Article  CAS  Google Scholar 

  3. Militký J, Jabbar A (2015) Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites. Compos B Eng 80:361–368

    Article  CAS  Google Scholar 

  4. Anderson BJ (2013) Thermal stability and lifetime estimates of a high temperature epoxy by Tg reduction. Polym Degrad Stab 98(11):2375–2382

    Article  CAS  Google Scholar 

  5. Dai J, Teng N, Liu J, Feng J, Zhu J, Liu X (2019) Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Compos Part B Eng 179:107523

    Article  CAS  Google Scholar 

  6. Ji Y-H, Liu Y, Huang G-W, Shen X-J, Xiao H-M, Fu S-Y (2015) Ternary Ag/epoxy adhesive with excellent overall performance. ACS Appl Mater Interfaces 7(15):8041–8052

    Article  CAS  Google Scholar 

  7. Mansourian‐Tabaei M, Jafari SH, Khonakdar HA (2014) Lap shear strength and thermal stability of diglycidyl ether of bisphenol a/epoxy novolac adhesives with nanoreinforcing fillers. J Appl Polym Sci 131(6):40017

    Article  CAS  Google Scholar 

  8. Suryanto H, Marsyahyo E, Surya Irawan Y, Soenoko R (2015) Improvement of interfacial shear strength of mendong fiber (Fimbristylis globulosa) reinforced epoxy composite using the AC electric fields. Int J Polym Sci 2015:1–10

    Article  CAS  Google Scholar 

  9. Boopalan M, Niranjanaa M, Umapathy M (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B Eng 51:54–57

    Article  CAS  Google Scholar 

  10. Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang D-Y (2015) A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. J Mater Chem A 3(43):21907–21921

    Article  CAS  Google Scholar 

  11. Shahedifar V, Masoud Rezadoust A, Amiri Amraei I (2016) Comparison of physical, thermal, and thermomechanical properties of cotton/epoxy composite and cotton/vinyl ester composite inhibitors. Propellants Explos Pyrotech 41(2):321–326

    Article  CAS  Google Scholar 

  12. Kaya GG, Yilmaz E, Deveci H (2018) Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: enhanced thermal and acoustic insulation performance. Compos B Eng 150:1–6

    Article  CAS  Google Scholar 

  13. Hu G, Zhang X, Liu L, Weng L (2019) Improvement of graphene oxide/epoxy resin adhesive properties through interface modification. High Perform Polym 31(3):341–349

    Article  CAS  Google Scholar 

  14. Vietri U, Guadagno L, Raimondo M, Vertuccio L, Lafdi K (2014) Nanofilled epoxy adhesive for structural aeronautic materials. Compos B Eng 61:73–83

    Article  CAS  Google Scholar 

  15. Yan X, Cai Y, Lu R, Miyakoshi T (2017) Development and characterization of new coating material of blended epoxy–lacquer with aluminum. Int J Polym Sci 2017:1–8

    Article  CAS  Google Scholar 

  16. Javidparvar AA, Naderi R, Ramezanzadeh B (2019) Epoxy–polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos B Eng 172:363–375

    Article  CAS  Google Scholar 

  17. Chen C, Tang Y, Ye YS, Xue Z, Xue Y, Xie X, Mai Y-W (2014) High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos Sci Technol 105:80–85

    Article  CAS  Google Scholar 

  18. Huan X, Shi K, Yan J, Lin S, Li Y, Jia X, Yang X (2020) High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification. Compos Part B Eng 193:107987

    Article  CAS  Google Scholar 

  19. Wang Z, Zhou W, Sui X, Dong L, Cai H, Zuo J, Liu X, Chen Q (2018) Dielectric studies of al nanoparticle reinforced epoxy resin composites. Polym Compos 39(3):887–894

    Article  CAS  Google Scholar 

  20. Szymańska J, Bakar M, Białkowska A, Kostrzewa M (2018) Study on the adhesive properties of reactive liquid rubber toughened epoxy–clay hybrid nanocomposites. J Polym Eng 38(3):231–238

    Article  CAS  Google Scholar 

  21. Tsang WL, Taylor AC (2019) Fracture and toughening mechanisms of silica-and core–shell rubber-toughened epoxy at ambient and low temperature. J Mater Sci 54(22):13938–13958. https://doi.org/10.1007/s10853-019-03893-y

    Article  CAS  Google Scholar 

  22. Liu H, Gao X, Deng B, Huang G (2018) Simultaneously reinforcing and toughening epoxy network with a novel hyperbranched polysiloxane modifier. J Appl Polym Sci 135(23):46340

    Article  CAS  Google Scholar 

  23. Klingler A, Bajpai A, Wetzel B (2018) The effect of block copolymer and core–shell rubber hybrid toughening on morphology and fracture of epoxy-based fibre reinforced composites. Eng Fract Mech 203:81–101

    Article  Google Scholar 

  24. Chaudhary S, Surekha P, Kumar D, Rajagopal C, Roy P (2015) Amine-functionalized poly (styrene) microspheres as thermoplastic toughener for epoxy resin. Polym Compos 36(1):174–183

    Article  CAS  Google Scholar 

  25. Phua J-L, Teh P-L, Ghani SA, Yeoh C-K (2016) Effect of heat assisted bath sonication on the mechanical and thermal deformation behaviours of graphene nanoplatelets filled epoxy polymer composites. Int J Polym Sci 2016:1–8

    Article  CAS  Google Scholar 

  26. Xu SA, Wang GT, Mai YW (2013) Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J Mater Sci 48(9):3546–3556. https://doi.org/10.1007/s10853-013-7149-4

    Article  CAS  Google Scholar 

  27. Mousavi SR, Amraei IA (2015) Toughening of dicyandiamide-cured DGEBA-based epoxy resin using MBS core–shell rubber particles. J Compos Mater 49(19):2357–2363

    Article  CAS  Google Scholar 

  28. Mousavi SR, Amiri Amraei I (2016) Influence of nanosilica and methyl methacrylate–butadiene–styrene core–shell rubber particles on the physical-mechanical properties and cure kinetics of diglycidyl ether of bisphenol-A-based epoxy resin. High Perform Polym 28(7):809–819

    Article  CAS  Google Scholar 

  29. Li T, Heinzer MJ, Francis LF, Bates FS (2016) Engineering superior toughness in commercially viable block copolymer modified epoxy resin. J Polym Sci Part B Polym Phys 54(2):189–204

    Article  CAS  Google Scholar 

  30. Mezzenga R, Boogh L, Månson J-AE (2001) A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Compos Sci Technol 61(5):787–795

    Article  CAS  Google Scholar 

  31. Bagheri R, Marouf B, Pearson R (2009) Rubber-toughened epoxies: a critical review. J Macromol Sci Part C Polym Rev 49(3):201–225

    CAS  Google Scholar 

  32. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2018) Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind Eng Chem Res 57(8):2711–2726

    Article  CAS  Google Scholar 

  33. Nanda T, Singh K, Shelly D, Mehta R (2020) Advancements in multi-scale filler reinforced epoxy nanocomposites for improved impact strength: a review. Crit Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2020.1777934

    Article  Google Scholar 

  34. May C (2018) Epoxy resins: chemistry and technology. Routledge, London

    Book  Google Scholar 

  35. Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  36. Tang L-C, Wang X, Wan Y-J, Wu L-B, Jiang J-X, Lai G-Q (2013) Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Mater Chem Phys 141(1):333–342

    Article  CAS  Google Scholar 

  37. Gibson G (2017) Epoxy resins, Brydson’s plastics materials. Elsevier, Amsterdam, pp 773–797

    Book  Google Scholar 

  38. Ratna D (2009) Handbook of thermoset resins. ISmithers, Shawbury

    Google Scholar 

  39. Reis P, Ferreira J, Santos P, Richardson M, Santos J (2012) Impact response of Kevlar composites with filled epoxy matrix. Compos Struct 94(12):3520–3528

    Article  Google Scholar 

  40. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat G, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7(23):10294–10329

    Article  CAS  Google Scholar 

  41. Saleh MN, Tomić NZ, Marinković A, de Freitas ST (2021) The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded joints. Polym Test 96:107122

    Article  CAS  Google Scholar 

  42. Ma H, Aravand MA, Falzon BG (2021) Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes. Compos Sci Technol 201:108523

    Article  CAS  Google Scholar 

  43. McGarry F (1970) Building design with fibre reinforced materials. Proc R Soc Lond A Math Phys Sci 319(1536):59–68

    CAS  Google Scholar 

  44. Wang F, Drzal LT, Qin Y, Huang Z (2016) Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos A Appl Sci Manuf 87:10–22

    Article  CAS  Google Scholar 

  45. Wang L, Tan Y, Wang H, Gao L, Xiao C (2018) Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN. Chem Phys Lett 699:14–21

    Article  CAS  Google Scholar 

  46. Bach Q-V, Vu CM, Vu HT, Hoang T, Dieu TV, Nguyen DD (2020) Epoxidized soybean oil grafted with CTBN as a novel toughener for improving the fracture toughness and mechanical properties of epoxy resin. Polym J 52(3):345–357

    Article  CAS  Google Scholar 

  47. Gouda PS, Chatterjee V, Barhai P, Veeresh Kumar GB (2017) Fracture toughness of glass epoxy laminates using carbon nano particles and ETBN rubber. Mater Perform Charact 6(1):488–499

    CAS  Google Scholar 

  48. Dou H, Tian B, Huang Y, Quan Y, Chen Q, Yin G (2016) Improved mechanical properties of ATBN-toughened epoxy networks by controlling the phase separation scale. J Adhes Sci Technol 30(6):642–652

    Article  CAS  Google Scholar 

  49. Fakhar A, Seyed Salehi M, Keivani M, Abadyan M (2016) Comprehensive study on using VTBN reactive oligomer for rubber toughening of epoxy resin and composite. Polym Plast Technol Eng 55(4):343–355

    Article  CAS  Google Scholar 

  50. Zhang J, Deng S, Wang Y, Ye L (2016) Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Compos A Appl Sci Manuf 80:82–94

    Article  CAS  Google Scholar 

  51. Tripathi G, Srivastava D (2008) Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3, 4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Mater Sci Eng A 496(1–2):483–493

    Article  CAS  Google Scholar 

  52. Kunz-Douglass S, Beaumont PW, Ashby M (1980) A model for the toughness of epoxy–rubber particulate composites. J Mater Sci 15(5):1109–1123. https://doi.org/10.1007/BF00551799

    Article  CAS  Google Scholar 

  53. Huang Y, Kinloch A (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. J Mater Sci 27(10):2753–2762. https://doi.org/10.1007/BF00540702

    Article  CAS  Google Scholar 

  54. Huang Y, Kinloch A (1992) The toughness of epoxy polymers containing microvoids. Polymer 33(6):1330–1332

    Article  CAS  Google Scholar 

  55. Huang Y, Kinloch A (1992) The sequence of initiation of the toughening micromechanisms in rubber-modified epoxy polymers. Polymer 33(24):5338–5340

    Article  CAS  Google Scholar 

  56. Huang Y, Kinloch A (1992) The role of plastic void growth in the fracture of rubber-toughened epoxy polymers. J Mater Sci Lett 11(8):484–487

    Article  CAS  Google Scholar 

  57. Bajpai A, Wetzel B, Klingler A, Friedrich K (2020) Mechanical properties and fracture behavior of high-performance epoxy nanocomposites modified with block polymer and core–shell rubber particles. J Appl Polym Sci 137(11):48471

    Article  CAS  Google Scholar 

  58. Konnola R, Joji J, Parameswaranpillai J, Joseph K (2015) Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites. RSC Adv 5(76):61775–61786

    Article  CAS  Google Scholar 

  59. Lai M, Friedrich K, Botsis J, Burkhart T (2010) Evaluation of residual strains in epoxy with different nano/micro-fillers using embedded fiber Bragg grating sensor. Compos Sci Technol 70(15):2168–2175

    Article  CAS  Google Scholar 

  60. Bajpai A, Wetzel B, Friedrich K (2020) High strength epoxy system modified with soft block copolymer and stiff core–shell rubber nanoparticles: morphology, mechanical properties, and fracture mechanisms. Express Polym Lett 14(4):384–399

    Article  CAS  Google Scholar 

  61. Giannakopoulos G, Masania K, Taylor A (2011) Toughening of epoxy using core–shell particles. J Mater Sci 46(2):327–338. https://doi.org/10.1007/s10853-010-4816-6

    Article  CAS  Google Scholar 

  62. Zotti A, Zuppolini S, Zarrelli M, Borriello A (2016) Fracture toughening mechanisms in epoxy adhesives. Adhes Appl Prop 1:257

    Google Scholar 

  63. Kargarzadeh H, Ahmad I, Abdullah I (2015) Mechanical properties of epoxy–rubber blends, Handbook of epoxy blends. Springer, Cham, pp 1–36

    Book  Google Scholar 

  64. Kim JK, Datta S (2013) Rubber-thermoset blends: micro and nano structured, Advances in elastomers I. Springer, Berlin, pp 229–262

    Google Scholar 

  65. Kargarzadeh H, Ahmad I, Abdullah I (2014) Liquid rubbers as toughening agents. In: Micro-and nanostructured epoxy/rubber blend. John Wiley & Sons, pp 31–52

  66. Grishchuk S, Gryshchuk O, Weber M, Karger-Kocsis J (2012) Structure and toughness of polyethersulfone (PESU)-modified anhydride-cured tetrafunctional epoxy resin: effect of PESU molecular mass. J Appl Polym Sci 123(2):1193–1200

    Article  CAS  Google Scholar 

  67. Chen SC, Chiu HT, Ye CP (2002) Study of ionic polymer toughening epoxy resin. J Appl Polym Sci 86(14):3740–3751

    Article  CAS  Google Scholar 

  68. Ritzenthaler S, Girard-Reydet E, Pascault J (2000) Influence of epoxy hardener on miscibility of blends of poly (methyl methacrylate) and epoxy networks. Polymer 41(16):6375–6386

    Article  CAS  Google Scholar 

  69. Goossens S, Goderis B, Groeninckx G (2006) Reaction-induced phase separation in crystallizable micro-and nanostructured high melting thermoplastic/epoxy resin blends. Macromolecules 39(8):2953–2963

    Article  CAS  Google Scholar 

  70. Kim ST, Kim J, Lim S, Choe CR, Hong SI (1998) The phase transformation toughening and synergism in poly (butylene terephthalate)/poly (tetramethyleneglycol) copolymer-modified epoxies. J Mater Sci 33(9):2421–2429. https://doi.org/10.1023/A:1004316210745

    Article  CAS  Google Scholar 

  71. Nichols ME, Robertson RE (1994) The toughness of epoxy-poly (butylene terephthalate) blends. J Mater Sci 29(22):5916–5926. https://doi.org/10.1007/BF00366876

    Article  CAS  Google Scholar 

  72. Teng K-C, Chang F-C (1996) Single-phase and multiple-phase thermoplastic/thermoset polyblends: 2. Morphologies and mechanical properties of phenoxy/epoxy blends. Polymer 37(12):2385–2394

    Article  CAS  Google Scholar 

  73. Choe Y, Kim M, Kim W (2003) In situ detection of the onset of phase separation and gelation in epoxy/anhydride/thermoplastic blends. Macromol Res 11(4):267–272

    Article  CAS  Google Scholar 

  74. Korenberg C, Kinloch A, Taylor A, Schut J (2003) Toughness of syndiotactic polystyrene (sPS)/epoxy blends. J Materials Sci Letters 22:507–512

    Article  CAS  Google Scholar 

  75. Poel GV, Goossens S, Goderis B, Groeninckx G (2005) Reaction induced phase separation in semicrystalline thermoplastic/epoxy resin blends. Polymer 46(24):10758–10771

    Article  CAS  Google Scholar 

  76. Hatui G, Malas A, Bhattacharya P, Dhibar S, Kundu MK, Das CK (2015) Effect of expanded graphite and PEI-co-silicon rubber on the thermo mechanical, morphological as well as rheological properties of in situ composites based on poly (ether imide) and liquid crystalline polymer. J Alloy Compd 619:709–718

    Article  CAS  Google Scholar 

  77. Cheng C, Chen Z, Huang Z, Zhang C, Tusiime R, Zhou J, Sun Z, Liu Y, Yu M, Zhang H (2020) Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Compos Part A Appl Sci Manuf 129:105696

    Article  CAS  Google Scholar 

  78. Francis B, Lakshmana Rao V, Ramaswamy R, Jose S, Thomas S, Raju K (2005) Morphology, viscoelastic properties, and mechanical behavior of epoxy resin modified with hydroxyl-terminated poly (ether ether ketone) oligomer with pendent tert-butyl groups. Polym Eng Sci 45(12):1645–1654

    Article  CAS  Google Scholar 

  79. Zhang XJ, Yi XS, Xu YZ (2008) Cure-induced phase separation of epoxy/DDS/PEK-C composites and its temperature dependency. J Appl Polym Sci 109(4):2195–2206

    Article  CAS  Google Scholar 

  80. Landry B, Hubert P (2015) Experimental study of defect formation during processing of randomly-oriented strand carbon/PEEK composites. Compos A Appl Sci Manuf 77:301–309

    Article  CAS  Google Scholar 

  81. Jyotishkumar P, Koetz J, Tiersch B, Strehmel V, Özdilek C, Moldenaers P, Hässler R, Thomas S (2009) Complex phase separation in poly (acrylonitrile–butadiene–styrene)-modified epoxy/4, 4′-diaminodiphenyl sulfone blends: generation of new micro-and nanosubstructures. J Phys Chem B 113(16):5418–5430

    Article  CAS  Google Scholar 

  82. Sharma M, Bijwe J, Mitschang P (2011) Abrasive wear studies on composites of PEEK and PES with modified surface of carbon fabric. Tribol Int 44(2):81–91

    Article  CAS  Google Scholar 

  83. Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly (ether sulfone) composites. Eur Polym J 49(10):3125–3134

    Article  CAS  Google Scholar 

  84. Cheng X, Wu Q, Morgan SE, Wiggins JS (2017) Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition. J Appl Polym Sci. https://doi.org/10.1002/app.44775

    Article  Google Scholar 

  85. Oyanguren P, Galante M, Andromaque K, Frontini P, Williams R (1999) Development of bicontinuous morphologies in polysulfone–epoxy blends. Polymer 40(19):5249–5255

    Article  CAS  Google Scholar 

  86. Gan W, Xiong W, Yu Y, Li S (2009) Effects of the molecular weight of poly (ether imide) on the viscoelastic phase separation of poly (ether imide)/epoxy blends. J Appl Polym Sci 114(5):3158–3167

    Article  CAS  Google Scholar 

  87. Brooker R, Kinloch A, Taylor A (2010) The morphology and fracture properties of thermoplastic-toughened epoxy polymers. J Adhes 86(7):726–741

    Article  CAS  Google Scholar 

  88. Yu G, Wu P (2014) Effect of chemically modified graphene oxide on the phase separation behaviour and properties of an epoxy/polyetherimide binary system. Polym Chem 5(1):96–104

    Article  CAS  Google Scholar 

  89. Li W, Xia Z, Li A, Ling Y, Wang B, Gan W (2015) Effect of SiO2 nanoparticles on the reaction-induced phase separation in dynamically asymmetric epoxy/PEI blends. RSC Adv 5(11):8471–8478

    Article  CAS  Google Scholar 

  90. Ma H, Aravand MA, Falzon BG (2019) Phase morphology and mechanical properties of polyetherimide modified epoxy resins: a comparative study. Polymer 179:121640

    Article  CAS  Google Scholar 

  91. Liu J, Chen C, Feng Y, Liao Y, Ye Y, Xie X, Mai Y-W (2018) Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface. ACS Appl Mater Interfaces 10(1):1204–1216

    Article  CAS  Google Scholar 

  92. Aliakbari M, Jazani OM, Sohrabian M (2019) Epoxy adhesives toughened with waste tire powder, nanoclay, and phenolic resin for metal-polymer lap-joint applications. Prog Org Coat 136:105291

    Article  CAS  Google Scholar 

  93. Varghese AJ, Ronald BA (2020) Low velocity impact, fatigue and visco-elastic behaviour of carbon/E-glass intra-ply fibre-reinforced nano-silica toughened epoxy composite. SILICON 13:1–7

    Google Scholar 

  94. Xu Z, Song P, Zhang J, Guo Q, Mai Y-W (2018) Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer. Compos Sci Technol 168:363–370

    Article  CAS  Google Scholar 

  95. Ning H, Li Y, Li J, Hu N, Liu Y, Wu L, Liu F (2015) Toughening effect of CB-epoxy interleaf on the interlaminar mechanical properties of CFRP laminates. Compos A Appl Sci Manuf 68:226–234

    Article  CAS  Google Scholar 

  96. Opelt CV, Becker D, Lepienski CM, Coelho LA (2015) Reinforcement and toughening mechanisms in polymer nanocomposites–carbon nanotubes and aluminum oxide. Compos B Eng 75:119–126

    Article  CAS  Google Scholar 

  97. Goyat M, Rana S, Halder S, Ghosh P (2018) Facile fabrication of epoxy–TiO2 nanocomposites: a critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. Ultrason Sonochem 40:861–873

    Article  CAS  Google Scholar 

  98. Tang Y, Ye L, Zhang Z, Friedrich K (2013) Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—a review. Compos Sci Technol 86:26–37

    Article  CAS  Google Scholar 

  99. Hsieh T, Kinloch A, Masania K, Taylor A, Sprenger S (2010) The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26):6284–6294

    Article  CAS  Google Scholar 

  100. Johnsen B, Kinloch A, Mohammed R, Taylor A, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541

    Article  CAS  Google Scholar 

  101. Zamanian M, Mortezaei M, Salehnia B, Jam J (2013) Fracture toughness of epoxy polymer modified with nanosilica particles: particle size effect. Eng Fract Mech 97:193–206

    Article  Google Scholar 

  102. Könczöl L, Döll W, Buchholz U, Mülhaupt R (1994) Ultimate properties of epoxy resins modified with a polysiloxane–polycaprolactone block copolymer. J Appl Polym Sci 54(6):815–826

    Article  Google Scholar 

  103. Bashar MT, Sundararaj U, Mertiny P (2014) Morphology and mechanical properties of nanostructured acrylic tri-block-copolymer modified epoxy. Polym Eng Sci 54(5):1047–1055

    Article  CAS  Google Scholar 

  104. Jayan JS, Saritha A, Deeraj B, Joseph K (2020) Triblock copolymer grafted Graphene oxide as nanofiller for toughening of epoxy resin. Mater Chem Phys 248:122930

    Article  CAS  Google Scholar 

  105. Ruiz-Perez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer 49(21):4475–4488

    Article  CAS  Google Scholar 

  106. Yu R, Zheng S, Li X, Wang J (2012) Reaction-induced microphase separation in epoxy thermosets containing block copolymers composed of polystyrene and poly (ε-caprolactone): influence of copolymer architectures on formation of nanophases. Macromolecules 45(22):9155–9168

    Article  CAS  Google Scholar 

  107. Kishi H, Kunimitsu Y, Imade J, Oshita S, Morishita Y, Asada M (2011) Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer 52(3):760–768

    Article  CAS  Google Scholar 

  108. Tao L, Sun Z, Min W, Ou H, Qi L, Yu M (2020) Improving the toughness of thermosetting epoxy resins via blending triblock copolymers. RSC Adv 10(3):1603–1612

    Article  CAS  Google Scholar 

  109. Nian F, Ou J, Yong Q, Zhao Y, Pang H, Liao B (2018) Reactive block copolymers for the toughening of epoxies: effect of nanostructured morphology and reactivity. J Macromol Sci Part A 55(7):533–543

    Article  CAS  Google Scholar 

  110. Parameswaranpillai J, Sidhardhan SK, Harikrishnan P, Pionteck J, Siengchin S, Unni AB, Magueresse A, Grohens Y, Hameed N, Jose S (2017) Morphology, thermo-mechanical properties and surface hydrophobicity of nanostructured epoxy thermosets modified with PEO–PPO–PEO triblock copolymer. Polym Test 59:168–176

    Article  CAS  Google Scholar 

  111. Larrañaga M, Serrano E, Martin MD, Tercjak A, Kortaberria G, de la Caba K, Riccardi CC, Mondragon I (2007) Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polym Int 56(11):1392–1403

    Article  CAS  Google Scholar 

  112. Chu W-C, Lin W-S, Kuo S-W (2016) Flexible epoxy resin formed upon blending with a triblock copolymer through reaction-induced microphase separation. Materials 9(6):449

    Article  CAS  Google Scholar 

  113. Dean JM, Grubbs RB, Saad W, Cook RF, Bates FS (2003) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci Part B Polym Phys 41(20):2444–2456

    Article  CAS  Google Scholar 

  114. Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33(26):9522–9534

    Article  CAS  Google Scholar 

  115. Garate H, Goyanes S, D’Accorso NB (2014) Controlling nanodomain morphology of epoxy thermosets modified with reactive amine-containing epoxidized poly (styrene-b-isoprene-b-styrene) block copolymer. Macromolecules 47(21):7416–7423

    Article  CAS  Google Scholar 

  116. Chen S, Xu Z, Zhang D (2018) Synthesis and application of epoxy-ended hyperbranched polymers. Chem Eng J 343:283–302

    Article  CAS  Google Scholar 

  117. Ma R, Yang P, Bian F (2018) Magnetic dendritic polymer nanocomposites as supports for palladium: a highly efficient and reusable catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. New J Chem 42(6):4748–4756

    Article  CAS  Google Scholar 

  118. Han J, Liu T, Zhang S, Hao C, Xin J, Guo B, Zhang J (2019) Hyperbranched polymer assisted curing and repairing of an epoxy coating. Ind Eng Chem Res 58(16):6466–6475

    Article  CAS  Google Scholar 

  119. Concellón A, Liang T, Schenning AP, Serrano JL, Romero P, Marcos M (2018) Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers. J Mater Chem C 6(5):1000–1007

    Article  Google Scholar 

  120. Li S, Wang J, Tuo X, He Y (2018) Hydrophilization of polyurethane foam carriers in MBBR with hyperbranched polymeric diazonium salts. Chem Res Chin Univ 34(5):844–848

    Article  CAS  Google Scholar 

  121. Kosakowska KA, Casey BK, Kurtz SL, Lawson LB, Grayson SM (2018) Evaluation of amphiphilic star/linear–dendritic polymer reverse micelles for transdermal drug delivery: directing carrier properties by tailoring core versus peripheral branching. Biomacromol 19(8):3163–3176

    Article  CAS  Google Scholar 

  122. Ma S, Li T, Liu X, Zhu J (2016) Research progress on bio-based thermosetting resins. Polym Int 65(2):164–173

    Article  CAS  Google Scholar 

  123. Gandini A, Lacerda TM, Carvalho AJ, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116(3):1637–1669

    Article  CAS  Google Scholar 

  124. Mashouf Roudsari G, Mohanty AK, Misra M (2017) Green approaches to engineer tough biobased epoxies: a review. ACS Sustain Chem Eng 5(11):9528–9541

    Article  CAS  Google Scholar 

  125. Liu T, Nie Y, Chen R, Zhang L, Meng Y, Li X (2015) Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms. J Mater Chem A 3(3):1188–1198

    Article  CAS  Google Scholar 

  126. Fei X, Wei W, Tang Y, Zhu Y, Luo J, Chen M, Liu X (2017) Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester. Eur Polym J 90:431–441

    Article  CAS  Google Scholar 

  127. Zou Z-P, Liu X-B, Wu Y-P, Tang B, Chen M, Zhao X-L (2016) Hyperbranched polyurethane as a highly efficient toughener in epoxy thermosets with reaction-induced microphase separation. RSC Adv 6(22):18060–18070

    Article  CAS  Google Scholar 

  128. Cai H, Hu J, Wang Y, Wang J (2019) Liquid oxygen compatibility and toughness of epoxy resin modified by a novel hyperbranched polysiloxane. Mater Res Express 6(8):085338

    Article  CAS  Google Scholar 

  129. Li J, Zhu W, Zhang S, Gao Q, Li J, Zhang W (2019) Amine-terminated hyperbranched polyamide covalent functionalized graphene oxide–reinforced epoxy nanocomposites with enhanced toughness and mechanical properties. Polym Test 76:232–244

    Article  CAS  Google Scholar 

  130. Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44(12):4091–4130

    Article  CAS  Google Scholar 

  131. Chen J, Kinloch A, Sprenger S, Taylor A (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core–shell particles. Polymer 54(16):4276–4289

    Article  CAS  Google Scholar 

  132. Brown HR, Schneider JA, Murphy TL (2014) Experimental studies of the deformation mechanisms of core–shell rubber-modified diglycidyl ether of bisphenol-A epoxy at cryogenic temperatures. J Compos Mater 48(11):1279–1296

    Article  Google Scholar 

  133. Yee A (1989) Toughening mechanisms in elastomer-modified epoxies, Part. 3. The effect of cross-link density. J Mater Sci 24:2571. https://doi.org/10.1007/BF01174528

    Article  Google Scholar 

  134. Huang Y, Hunston D, Kinloch AJ, Riew CK (1993) Mechanisms of toughening thermoset resins. ACS Publications, Washington

    Book  Google Scholar 

  135. He Y, Sang Y, Zhang L, Yao D, Sun K, Zhang Y (2014) Coefficient of thermal expansion and mechanical properties at cryogenic temperature of core–shell rubber particle modified epoxy. Plast Rubber Compos 43(3):89–97

    Article  CAS  Google Scholar 

  136. Quan D, Ivankovic A (2015) Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28

    Article  CAS  Google Scholar 

  137. Bain ED, Knorr DB, Richardson AD, Masser KA, Yu J, Lenhart JL (2016) Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. J Mater Sci 51(5):2347–2370. https://doi.org/10.1007/s10853-015-9544-5

    Article  CAS  Google Scholar 

  138. Xu C, Qu T, Zhang X, Qu X, Wang N, Zhang Q, Abdel-Magid B, Li G (2019) Enhanced toughness and thermal conductivity for epoxy resin with a core–shell structured polyacrylic modifier and modified boron nitride. RSC Adv 9(15):8654–8663

    Article  CAS  Google Scholar 

  139. Swan SR, Devenport TM, Seraji SM, Griffin JM, Gashi BV, Creighton C, Varley RJ (2021) Study of the acoustic emission response to a core–shell rubber-toughened, high-temperature composite. J Mater Sci 56(9):5609–5623. https://doi.org/10.1007/s10853-020-05612-4

    Article  CAS  Google Scholar 

  140. Mehrabi-Kooshki M, Jalali-Arani A (2019) Preparation of binary and hybrid epoxy nanocomposites containing graphene oxide and rubber nanoparticles: fracture toughness and mechanical properties. J Appl Polym Sci 136(4):46988

    Article  CAS  Google Scholar 

  141. Quan D, Carolan D, Rouge C, Murphy N, Ivankovic A (2017) Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives. J Mater Sci 52(8):4493–4508. https://doi.org/10.1007/s10853-016-0695-9

    Article  CAS  Google Scholar 

  142. Bajpai A, Martin R, Faria H, Ibarboure E, Carlotti S (2020) Epoxy based hybrid nanocomposites: fracture mechanisms, tensile properties and electrical properties. Mater Today Proc 34:210–216

    Article  CAS  Google Scholar 

  143. Phong NT, Gabr MH, Duc VM, Betti A, Okubo K, Chuong B, Fujii T (2013) Improved fracture toughness and fatigue life of carbon fiber reinforced epoxy composite due to incorporation of rubber nanoparticles. J Mater Sci 48(17):6039–6047. https://doi.org/10.1007/s10853-013-7400-z

    Article  CAS  Google Scholar 

  144. Kinloch A, Lee S, Taylor A (2014) Improving the fracture toughness and the cyclic-fatigue resistance of epoxy–polymer blends. Polymer 55(24):6325–6334

    Article  CAS  Google Scholar 

  145. Wang J, Xue Z, Li Y, Li G, Wang Y, Zhong W-H, Yang X (2018) Synergistically effects of copolymer and core–shell particles for toughening epoxy. Polymer 140:39–46

    Article  CAS  Google Scholar 

  146. Tsai J-L, Huang B-H, Cheng Y-L (2009) Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. J Compos Mater 43(25):3107–3123

    Article  CAS  Google Scholar 

  147. Moghbelli E, Sun L, Jiang H, Boo WJ, Sue HJ (2009) Scratch behavior of epoxy nanocomposites containing α-zirconium phosphate and core–shell rubber particles. Polym Eng Sci 49(3):483–490

    Article  CAS  Google Scholar 

  148. Wu H (2013) Tensile properties and fracture toughness of three rubber-modified epoxies, Applied mechanics and materials. Trans Tech Publications, Zurich, pp 46–50

    Google Scholar 

  149. Su W, Han X, Gong J, Xi Z, Zhang J, Wang Q, Xie H (2020) Toughening epoxy asphalt binder using core–shell rubber nanoparticles. Constr Build Mater 258:s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Ali Khonakdar or Seyed Hassan Jafari.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.R., Estaji, S., Raouf Javidi, M. et al. Toughening of epoxy resin systems using core–shell rubber particles: a literature review. J Mater Sci 56, 18345–18367 (2021). https://doi.org/10.1007/s10853-021-06329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06329-8

Navigation