Skip to main content
Log in

Strengthened caloric effect in MnCoSi under combined applications of magnetic field and hydrostatic pressure

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The caloric effects under combined applications of magnetic field and hydrostatic pressure to a MnCoSi meta-magnet were investigated. Under a magnetic field change of 0–5 T, the maximum magnetic entropy change was enhanced by 35.7% when a 3.2kbar hydrostatic pressure was applied, and the cooling temperature span was extended by 60 K when a hydrostatic pressure of 9.7 kbar was applied. The coupled caloric entropy change, which originates from the coupling between the magnetism and volume, was calculated and accounted for the enhanced entropy change of MnCoSi. The present work facilitates the use of MnCoSi as a solid-state refrigerant and also enriches the investigation of the multicaloric effect under multiple external fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Annaorazov MP, Nikitin SA, Tyurin AL, Asatryan KA, Dovletov AK (1996) Anomalously high entropy change in FeRh alloy. J Appl Phys 79:1689–1695

    Article  CAS  Google Scholar 

  2. Hu FX, Shen BG, Sun JR, Cheng ZH, Rao GH, Zhang XX (2011) Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett 78:3675–3677

    Article  Google Scholar 

  3. Pecharsky VK, Gschneidnerd KA Jr (1997) Giant Magnetocaloric Effect in Gd5Si2Ge2. Phys Rev Lett 78:4494–4497

    Article  CAS  Google Scholar 

  4. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450–454

    Article  CAS  Google Scholar 

  5. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  CAS  Google Scholar 

  6. Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1−xSbx. Appl Phys Lett 79:3302–3304

    Article  CAS  Google Scholar 

  7. Liu EK, Wang WH, Feng L, Zhu W, Li GJ, Chen JL, Zhang HW, Wu GH, Jiang CB, Xu HB, de Boer FR (2012) Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat Commun 3:873

    Article  Google Scholar 

  8. Cazorla C (2019) Novel mechanocaloric materials for solid state cooling applications. Appl Phys Rev 6:041316

    Article  Google Scholar 

  9. Taulats ES, Planes A, Lloveras P, Barrio M, Tamarit JL, Pramanick S, Majumdar S, Frontera C, Mañosa L (2014) Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 89:214105

    Article  Google Scholar 

  10. Mañosa L, Gonzá lez-Alonso D, Planes A, Barrio M, Tamarit JL, Titov I, Acet M, Bhattacharyya A, Majumdar S (2011) Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat Commun 2:595

    Article  Google Scholar 

  11. de Medeiros LG Jr, de Oliveira NA, Troperb A (2010) Giant magnetocaloric and barocaloric effects in Mn(As1−xSbx). J Alloy Compd 501:177–182

    Article  Google Scholar 

  12. Lu BF, Xiao F, Yan AR, Liu J (2014) Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy. Appl Phys Lett 105:161905

    Article  Google Scholar 

  13. Yang Z, Cong DY, Sun XM, Nie ZH, Wang YD (2017) Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys. Acta Mater 127:33–42

    Article  CAS  Google Scholar 

  14. Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG (2015) Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci Rep 5:18027

    Article  CAS  Google Scholar 

  15. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    Article  CAS  Google Scholar 

  16. Gong YY, Wang DH, Cao QQ, Liu EK, Liu J, Du YW (2015) Electric field control of the magnetocaloric effect. Adv Mater 27:801–905

    Article  CAS  Google Scholar 

  17. Liang FX, Hao JZ, Shen FR, Zhou HB, Wang J, Hu FX, He J, Sun JR, Shen BG (2019) Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15. APL Mater 7:051102

    Article  Google Scholar 

  18. Taulats ES, Castan T, Planes A, Lewis LH, Barua R, Pramanick S, Majumdar S, Mañosa L (2017) Giant multicaloric response of bulk Fe49Rh51. Phys Rev B 95:104424

    Article  Google Scholar 

  19. Gottschall T, Gràcia-Condal A, Fries M, Taube A, Pfeuffer L, Mañosa L, Planes A, Skokov KP, Gutfleisch O (2018) A multicaloric cooling cycle that exploits thermal hysteresis. Nat Mater 17:929–934

    Article  CAS  Google Scholar 

  20. Meng H, Li B, Ren WJ, Zhang ZD (2013) Coupled caloric effects in multiferroics. Phys Lett A 377:567–571

    Article  CAS  Google Scholar 

  21. Planes A, Taulatsa ES, Castán T, Vives E, Mañosa L, Saxena A (2015) Caloric and multicaloric effects in shape memory alloys. Mater Today Proc 2S:S477–S484

    Article  Google Scholar 

  22. Taulats ES, Castán T, Mañosa L, Planes A, Mathur ND, Moya X (2018) Multicaloric materials and effects. MRS Bull 43(4):295–299

    Article  Google Scholar 

  23. Barcza A, Gercsi Z, Knight KS, Sandeman KG (2010) Giant Magnetoelastic Coupling in a Metallic Helical Metamagnet. Phys Rev Lett 104:247202

    Article  CAS  Google Scholar 

  24. Staunton JB, dos Santos Dias M, Peace J, Gercsi Z, Sandeman KG (2013) Tuning the metamagnetism of an antiferromagnetic metal. Phys Rev B 87:060404(R)

    Article  Google Scholar 

  25. Barcza A, Gercsi Z, Michor H, Suzuki K, Kockelmann W, Knight KS, Sandeman KG (2013) Magnetoelastic coupling and competing entropy changes in substituted CoMnSi metamagnets. Phys Rev B 87:064410

    Article  Google Scholar 

  26. Morrison K, Miyoshi Y, Moore JD, Barcza A, Sandeman KG, Caplin AD, Cohen LF (2008) Measurement of the magnetocaloric properties of CoMn0.95Fe0.05Si: large change with Fe substitution. Phys Rev B 78:134418

    Article  Google Scholar 

  27. Gong YY, Liu J, Xu GZ, Xu F, Wang DH (2017) Large reversible magnetostriction in B-substituted MnCoSi alloy at room temperature. Scr Mater 127:165–168

    Article  CAS  Google Scholar 

  28. Becerra CC, Shapira Y, Oliveira NF Jr, Chang TS (1980) Lifshitz point in MnP. Phys Rev Lett 25:1692–1695

    Article  Google Scholar 

  29. Gutfleisch O, Gottschall T, Fries M, Benke D, Radulov I, Skokov KP, Wende H, Gruner M, Acet M, Entel P, Farle M (2016) Mastering hysteresis in magnetocaloric materials. Philos Trans R Soc A 374:20150308

    Article  Google Scholar 

  30. Sandeman KG, Daou R, Özcan S, Durrell JH, Mathur ND, Fray DJ (2006) Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1−xGex. Phys Rev B 74:224436

    Article  Google Scholar 

  31. Zavorotnev YD, Medvedeva LI, Todris BM, Dvornikov EA, Popova OYu (2011) Behavior of antiferromagnetic MnCoSi in a magnetic field under pressure. J Magn Magn Mater 323:2808–2812

    Article  CAS  Google Scholar 

  32. Larson AC, Von Dreele RB ((2004)) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  33. Caron L, Ou ZQ, Nguyen TT, Cam Thanh DT, Tegus O, Brück E (2009) On the determination of the magnetic entropy change in materials with first-order transitions. J Magn Magn Mater 321:3559–3666

    Article  CAS  Google Scholar 

  34. Reis MS, Rubinger RM, Sobolev NA, Valente MA, Yamada K, Sato K, Todate Y, Bouravleuv A, Ranke PJ, Gama S (2008) Influence of the strong magnetocrystalline anisotropy on the magnetocaloric properties of MnP. Phys Rev B 77:104439

    Article  Google Scholar 

  35. Han F, Wang D, Wang YG, Li NN, Bao JK, Li B, Botana AS, Xiao YM, Chow P, Chung DY, Chen JH, Wan XG, Kanatzidis MG, Yang WG, Mao HK (2018) Spin quenching assisted by a strongly anisotropic compression behavior in MnP. New J Phys 20:023012

    Article  Google Scholar 

  36. Xu YJ, Liu M, Zheng P, Chen XR, Cheng JG, Luo JL, Xie WH, Yang YF (2017) First-principles calculations of the magnetic and electronic structures of MnP under pressure. J Phys Condens Matter 29:244001

    Article  Google Scholar 

  37. Caron L, Trung NT, Brück E (2011) Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe. Phy Rev B 84:020414(R)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51901170, 52071256, 52088101, 51971240, 51871174, U1832219, and 51771223), the open project of the Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education of China (No. MMMM-202003), the National Key Research and Development Program of China (Nos. 2017YFB0702702, 2019YFA0704900, and 2018YFA0305704), and the Key Program and Strategic Priority Research Program (B) of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Ma or Fengxia Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, Z., Qiao, K. et al. Strengthened caloric effect in MnCoSi under combined applications of magnetic field and hydrostatic pressure. J Mater Sci 56, 20060–20070 (2021). https://doi.org/10.1007/s10853-021-06546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06546-1

Navigation