Skip to main content
Log in

Influence of multi-walled carbon nanotubes on the fracture response and phase distribution of metakaolin-based potassium geopolymers

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research investigated the effects of multi-walled carbon nanotubes (MWCNTs) on the chemistry, microstructure, phase distribution, and fracture response of potassium-based metakaolin geopolymers at the microscopic scale. We formulated novel protocols to cast geopolymers reinforced with 0.3, 0.6, and 1.5 wt% MWCNTs. We studied the chemistry using XRD, FTIR, and solid state \(^{29}\)Si NMR. We characterized the microstructure and dispersion state of MWCNTs geopolymers using microscopic imaging and high-resolution scanning electron microscopy. We assessed the fracture behavior and mechanical properties using scratch tests and indentation tests. We used cluster analysis of indentation results to study the phase distribution. MWCNTs were well dispersed with an average accumulated area less than 8.9 \(\mu \hbox {m}^{2}\). XRD showed that MWCNTs preserved the amorphous phase. NMR showed that the addition of MWCNTs decreased \(\hbox {Q}^{4}\)(Al2) fraction, but increased \(\hbox {Q}^{4}\)(Al3) fraction. We observed a densification of the microstructure and a reduction in porosity. The microstructure showed that MWCNTs acted as bridges for fracture surfaces and connections for pores. The addition of 0.6 wt% MWCNTs increased the strength by 3.2%, and stiffness by 11.1%. Meanwhile, the addition of 1.5 wt% MWCNTs addition increased the fracture toughness by 10.5%. An inner strengthening effect was observed as MWCNTs reduced the microporosity, resulting in an increase in the indentation modulus and hardness for the dominant microphase. Therefore, MWCNTs promote the geopolymerization reaction, strengthen the geopolymer skeleton, affect the pore structure, and improve mechanical characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Davidovits J (1991) Geopolymers. J Therm Anal 37:1633–1656. https://doi.org/10.1007/bf01912193

    Article  CAS  Google Scholar 

  2. Norton MG, Provis JL (2020) 1000 at 1000: Geopolymer technology—the current state of the art. J Mater Sci 55:13487–13489. https://doi.org/10.1007/s10853-020-04990-z

    Article  CAS  Google Scholar 

  3. Ribero D, Kriven WM (2016) Properties of Geopolymer composites reinforced with basalt chopped strand mat or woven fabric. J Am Ceram Soc 99:1192–1199. https://doi.org/10.1111/jace.14079

    Article  CAS  Google Scholar 

  4. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  5. Bernal SA, Rodrı ED, Provis JL, Delvasto S (2012) Activation of metakaolin / slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor 3:99–108. https://doi.org/10.1007/s12649-011-9093-3

    Article  CAS  Google Scholar 

  6. Lecomte I, Henrist C, Li M et al (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26:3789–3797. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

    Article  CAS  Google Scholar 

  7. Li J, Zhang W, Li C, Monteiro PJM (2020) Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. J Clean Prod 261:121224. https://doi.org/10.1016/j.jclepro.2020.121224

    Article  Google Scholar 

  8. Li J, Zhang W, Li C, Monteiro PJM (2019) Green concrete containing diatomaceous earth and limestone: workability, mechanical properties, and life-cycle assessment. J Clean Prod 223:662–679. https://doi.org/10.1016/j.jclepro.2019.03.077

    Article  CAS  Google Scholar 

  9. Rocha S, Dias DP, César F et al (2018) Metakaolin-based geopolymer mortars with different alkaline activators. Constr Build Mater 178:453–461. https://doi.org/10.1016/j.conbuildmat.2018.05.172

    Article  CAS  Google Scholar 

  10. Mendes B, Klaus I, José A et al (2021) Assessment of mechanical and microstructural properties of geopolymers produced from metakaolin, silica fume, and red mud. Int J Appl Ceram Technol 18:262–274. https://doi.org/10.1111/ijac.13635

    Article  CAS  Google Scholar 

  11. Němeček J, Šmilauer V, Kopecký L (2011) Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cem Concr Compos 33:163–170. https://doi.org/10.1016/j.cemconcomp.2010.10.005

    Article  CAS  Google Scholar 

  12. Fernandez-Jimenez A, García-Lodeiro I, Palomo A (2007) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42:3055–3065. https://doi.org/10.1007/s10853-006-0584-8

    Article  CAS  Google Scholar 

  13. Shi C, Roy D, Krivenko P (2003) Alkali-activated cements and concretes. CRC Press, London,. https://doi.org/10.1201/9781482266900

  14. Wallah SE, Rangan BV (2006) Low-calcium fly ash-based geopolymer concrete: long-term properties. Res Rep GC

  15. Provis JL, van Deventer JSJ (2009). Geopolymers: structures, processing, properties and industrial applications. 1st ed., Woodhead Publishing Ltd

  16. Saafi M, Andrew K, Tang PL et al (2013) Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr Build Mater 49:46–55. https://doi.org/10.1016/j.conbuildmat.2013.08.007

    Article  Google Scholar 

  17. Tay YWD, Panda B, Paul SC et al (2017) 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp 12:261–276. https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  18. Panda B, Unluer C, Tan MJ (2018) Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem Concr Compos 94:307–314. https://doi.org/10.1016/j.cemconcomp.2018.10.002

    Article  CAS  Google Scholar 

  19. Su Z, Hou W, Sun Z (2020) Recent advances in carbon nanotube-geopolymer composite. Constr Build Mater 252:118940. https://doi.org/10.1016/j.conbuildmat.2020.118940

    Article  CAS  Google Scholar 

  20. Senatov FS, Niaza KV, Stepashkin AA, Kaloshkin SD (2016) Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Compos Part B Eng 97:193–200. https://doi.org/10.1016/j.compositesb.2016.04.067

    Article  CAS  Google Scholar 

  21. Akono A (2020) Fracture behavior of metakaolin-based geopolymer reinforced with carbon nanofibers. Int J Ceram Eng Sci 2:234–242. https://doi.org/10.1002/ces2.10060

    Article  CAS  Google Scholar 

  22. Chiappone A, Roppolo I, Naretto E et al (2017) Study of graphene oxide-based 3D printable composites: effect of the in situ reduction. Compos Part B Eng 124:9–15. https://doi.org/10.1016/j.compositesb.2017.05.049

    Article  CAS  Google Scholar 

  23. Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS-graphene nanocomposites. Compos Part A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  CAS  Google Scholar 

  24. Han Y, Wang FK, Wang H et al (2018) High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions. Compos Sci Technol 154:104–109. https://doi.org/10.1016/j.compscitech.2017.10.026

    Article  CAS  Google Scholar 

  25. Chen Y, Mao J, Wu J (2018) Microwave transparent crosslinked polystyrene nanocomposites with enhanced high voltage resistance via 3D printing bulk polymerization method. Compos Sci Technol 157:160–167. https://doi.org/10.1016/j.compscitech.2018.01.041

    Article  CAS  Google Scholar 

  26. Nguyen QT, Ngo T, Tran P et al (2016) Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr Build Mater 129:204–215. https://doi.org/10.1016/j.conbuildmat.2016.10.100

    Article  CAS  Google Scholar 

  27. Dresselhaus MS, Dresselhaus G, Avouris P (Eds.) (2000) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin

  28. Huang X, Liang W, Zhang S (2011) Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions. Nanoscale Res Lett 6:1–6. https://doi.org/10.1007/s11671-010-9801-0

    Article  CAS  Google Scholar 

  29. da Luz G, Gleize PJP, Batiston ER, Pelisser F (2019) Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer. Cem Concr Compos 104:103332. https://doi.org/10.1016/j.cemconcomp.2019.05.015

    Article  CAS  Google Scholar 

  30. Chougan M, Hamidreza Ghaffar S, Jahanzat M et al (2020) The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Constr Build Mater 250:118928. https://doi.org/10.1016/j.conbuildmat.2020.118928

    Article  CAS  Google Scholar 

  31. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  32. Abbasi SM, Ahmadi H, Khalaj G, Ghasemi B (2016) Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceram Int 42:15171–15176. https://doi.org/10.1016/j.ceramint.2016.06.080

    Article  CAS  Google Scholar 

  33. Yuan J, He P, Jia D et al (2017) In situ processing of MWCNTs/leucite composites through geopolymer precursor. J Eur Ceram Soc 37:2219–2226. https://doi.org/10.1016/j.jeurceramsoc.2017.01.008

    Article  CAS  Google Scholar 

  34. Khayamdar M, Khoramishad H (2021) The effect of metallic fiber geometry and multi-walled carbon nanotubes on the mechanical behavior of aluminum fiber-reinforced composite adhesive joints. Proc Inst Mech Eng Part L J Mater Des Appl 235(5):949–957. https://doi.org/10.1177/1464420720981404

    Article  CAS  Google Scholar 

  35. Khoramishad H, Zarifpour D (2018) Fracture response of adhesive joints reinforced with aligned multi-walled carbon nanotubes using an external electric field. Theor Appl Fract Mech 98:220–229.

  36. Ashofteh RS, Khoramishad H (2019) The influence of hygrothermal ageing on creep behavior of nanocomposite adhesive joints containing multi-walled carbon nanotubes and graphene oxide nanoplatelets. Int J Adhes Adhes 94:1–12. https://doi.org/10.1016/j.ijadhadh.2019.03.017

    Article  CAS  Google Scholar 

  37. Khoramishad H, Khayamdar M (2016) Toughening epoxy adhesives with multi-walled carbon nanotubes. J Adhesion 94. https://doi.org/10.1080/00218464.2016.1224184

  38. Gholami R, Khoramishad H, da Silva LFM (2020) Glass fiber-reinforced polymer nanocomposite adhesive joints reinforced with aligned carbon nanofillers. Compos Struct 253:112814. https://doi.org/10.1016/j.compstruct.2020.112814

    Article  Google Scholar 

  39. Chen J, Akono AT (2020) Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res 137:106197. https://doi.org/10.1016/j.cemconres.2020.106197

    Article  CAS  Google Scholar 

  40. Rovnaník P, Šimonová H, Topolář L et al (2016) Effect of carbon nanotubes on the mechanical fracture properties of fly ash geopolymer. Procedia Eng 151:321–328. https://doi.org/10.1016/j.proeng.2016.07.360

    Article  CAS  Google Scholar 

  41. Lizcano M, Kim HS, Basu S, Radovic M (2012) Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J Mater Sci 47:2607–2616. https://doi.org/10.1007/s10853-011-6085-4

    Article  CAS  Google Scholar 

  42. Zhang P, Wang K, Wang J et al (2020) Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int 46:20027–20037. https://doi.org/10.1016/j.ceramint.2020.05.074

    Article  CAS  Google Scholar 

  43. Khater HM, Abd El Gawaad HA (2016) Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr Build Mater 102:329–337. https://doi.org/10.1016/j.conbuildmat.2015.10.121

    Article  CAS  Google Scholar 

  44. Chen X, Mondal P (2020) Effects of NaOH amount on condensation mechanism to form aluminosilicate, case study of geopolymer gel synthesized via sol-gel method. J Sol-Gel Sci Technol 96:589–603. https://doi.org/10.1007/s10971-020-05360-6

    Article  CAS  Google Scholar 

  45. Pegel S, Pötschke P, Villmow T et al (2009) Spatial statistics of carbon nanotube polymer composites. Polymer Guildf 50:2123–2132. https://doi.org/10.1016/j.polymer.2009.02.030

    Article  CAS  Google Scholar 

  46. ASTM International: ASTM C20-00(2015), standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. https://www.astm.org/Standards/C20.htm

  47. Théréné F, Keita E, Nael-Redolfi J, Boustingorry P, Bonafous L, Roussel N (2020) Water absorption of recycled aggregates: Measurements, influence of temperature and practical consequences. Cem Concr Res 137:106196–106204

  48. Abdel-Ghani NT (2014) Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res. https://doi.org/10.1016/j.jare.2014.06.001

  49. Atchudan R, Pandurangan A, Joo J (2015). Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. https://doi.org/10.1166/jnn.2015.9706

  50. Nie P, Min C, Song HJ, Chen X, Zhang Z, Zhao K (2016). Preparation and tribological properties of polyimide / carboxyl-functionalized preparation and tribological properties of polyimide/carboxyl- functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. https://doi.org/10.1007/s11249-015-0476-7

  51. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  52. Sorelli L, Constantinides G, Ulm FJ, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38:1447–1456. https://doi.org/10.1016/j.cemconres.2008.09.002

    Article  CAS  Google Scholar 

  53. Akono AT, Randall NX, Ulm FJ (2012) Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals. J Mater Res 27:485–493. https://doi.org/10.1557/jmr.2011.402

    Article  CAS  Google Scholar 

  54. Akono AT, Ulm FJ (2014) An improved technique for characterizing the fracture toughness via scratch test experiments. Wear 313:117–124. https://doi.org/10.1016/j.wear.2014.02.015

    Article  CAS  Google Scholar 

  55. Kendall AK, Howard AJ, Birchall JD et al (1983) The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials and discussion, Philos Trans Royal Soc London. Ser A Math and Phys Sci A310:139–153

    Google Scholar 

  56. Rice RW (1999) Effects of amount, location, and character of porosity on stiffness and strength of ceramic fiber composites via different processing. J Mater Sci 34:2769–2772. https://doi.org/10.1023/A:1004606612294

    Article  CAS  Google Scholar 

  57. Akono AT, Koric S, Kriven WM (2019) Influence of pore structure on the strength behavior of particle- and fiber-reinforced metakaolin-based geopolymer composites. Cem Concr Compos 104:103361. https://doi.org/10.1016/j.cemconcomp.2019.103361

  58. Nash SG (2000) A survey of truncated-Newton methods. J Comput Appl Math 124:45–59. https://doi.org/10.1016/S0377-0427(00)00426-X

    Article  Google Scholar 

  59. Michie D (1968) “Memo” functions and machine learning. Nature 218:19–22. https://doi.org/10.1038/218019a0

  60. Akono A, Kabir P (2016) Nano-Scale Characterization of Organic-Rich Shale via Indentation Methods, New frontiers in oil and gas exploration. New Front Oil Gas Explor 40124. https://doi.org/10.1007/978-3-319-40124-9

  61. Constantinopoulos C, Titsias MK, Likas A (2006) Bayesian feature and model selection for Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 28:1013–1018. https://doi.org/10.1109/TPAMI.2006.111

    Article  Google Scholar 

  62. Rasmussen CE (2000) The infinite Gaussian mixture model. Adv Neural Inf Process Syst 554–559

  63. Chellappa R, Veeraraghavan A, Ramanathan N (2009) Gaussian mixture models. Encycl Biom 659–663.

  64. Vila JP, Schniter P (2013) Expectation-maximization Gaussian-mixture approximate message passing. IEEE Trans Signal Process 61:4658–4672. https://doi.org/10.1109/TSP.2013.2272287

    Article  Google Scholar 

  65. Lee WKW, Van Deventer JSJ (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19:8726–8734. https://doi.org/10.1021/la026127e

    Article  CAS  Google Scholar 

  66. Rees CA, Provis JL, Lukey GC, Van Deventer JSJ (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23:9076–9082. https://doi.org/10.1021/la701185g

    Article  CAS  Google Scholar 

  67. Davidovits, J. (2015) Geopolymer chemistry and applications. 5-th ed. Geopolymer Institute, Saint-Quentin, France

  68. Zhang DW, Min Wang D, Lin XQ, Zhang T (2018) The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes. Constr Build Mater 184:575–580. https://doi.org/10.1016/j.conbuildmat.2018.06.233

    Article  CAS  Google Scholar 

  69. Archez J, Texier-mandoki N, Bourbon X et al (2021) Shaping of geopolymer composites by 3D printing. J Build Eng 34:101894. https://doi.org/10.1016/j.jobe.2020.101894

    Article  Google Scholar 

  70. Panda B, Unluer C, Tan MJ (2019) Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos Part B Eng 176:107290. https://doi.org/10.1016/j.compositesb.2019.107290

    Article  CAS  Google Scholar 

  71. Chen S, Wu C, Yan D (2019) Binder-scale creep behavior of metakaolin-based geopolymer. Cem Concr Res 124:105810. https://doi.org/10.1016/j.cemconres.2019.105810

    Article  CAS  Google Scholar 

  72. Si R, Guo S, Dai Q, Wang J (2020) Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer. Constr Build Mater 254:119303. https://doi.org/10.1016/j.conbuildmat.2020.119303

    Article  CAS  Google Scholar 

  73. Yan S, Zhang F, Li H, Gao B, Xing P, He P, Jia D, (2020) Synthesis and mechanical properties of lightweight hybrid geopolymer foams reinforced with carbon nanotubes. pp 2335–2345. https://doi.org/10.1111/ijac.13543

  74. Zou B, Jian S, Korayem AH et al (2014) Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon N Y 85:212–220. https://doi.org/10.1016/j.carbon.2014.12.094

    Article  CAS  Google Scholar 

  75. Zhan M, Pan G, Zhou F et al (2020) In situ-grown carbon nanotubes enhanced cement-based materials with multifunctionality. Cem Concr Compos 108:103518. https://doi.org/10.1016/j.cemconcomp.2020.103518

    Article  CAS  Google Scholar 

  76. Chen X, Kim E et al (2020) Quantitative correlation between the degree of reaction and compressive strength of Metakaolin-based geopolymers. Materials 13:5784. https://doi.org/10.3390/ma13245784

    Article  CAS  Google Scholar 

  77. Tsai Y, Hanna JV, Lee Y et al (2010) Journal of solid state chemistry solid-state nmr study of geopolymer prepared by sol–gel chemistry. J Solid State Chem 183:3017–3022. https://doi.org/10.1016/j.jssc.2010.10.008

    Article  CAS  Google Scholar 

  78. Duxson P, Provis JL, Lukey GC, et al (2005) Si NMR study of structural ordering in aluminosilicate geopolymer gels, pp 3028–3036

  79. Sankar K, Sutrisno A, Kriven WM (2019) Slag-fly ash and slag-metakaolin binders: part II-Properties of precursors and NMR study of poorly ordered phases. J Am Ceram Soc 102:3204–3227. https://doi.org/10.1111/jace.16224

    Article  CAS  Google Scholar 

  80. Gupta R, Bhardwaj P, Deshmukh K, et al (2019) Development and characterization of inorganic-organic (Si-O-Al) hybrid geopolymeric precursors via solid state method, pp 221–232

  81. Samuel DM, Sutrisno A, Kriven W, (2021) Relative importance of Al ( V ) and reinforcement to the flexural strength of geopolymer composites, pp 3452–3460. https://doi.org/10.1111/jace.17656

  82. Provis JL (2006) Modelling the formation of geopolymers. Thesis 44:8–10

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CMMI 1829101. In addition, we would like to acknowledge the Walter P. Murphy Fellowship that supported Jiaxin Chen during her Ph.D. studies at the Department of Civil and Environmental Engineering at Northwestern University. We would also like to acknowledge Raymonde Council and Mairi Rose Glynn. This work made use of the EPIC Facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This work made use of the Jerome B. Cohen X-Ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1720139) at the Materials Research Center of Northwestern University and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205). This work made use of the MatCI Facility supported by the MRSEC program of the National Science Foundation (DMR-1720139) at the Materials Research Center of Northwestern University. This work made use of the Keck-II facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Moreover, we want to thank BASF for providing the raw metakaolin and Wacker for providing the fumed silica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ange-Therese Akono.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Akono, AT. Influence of multi-walled carbon nanotubes on the fracture response and phase distribution of metakaolin-based potassium geopolymers. J Mater Sci 56, 19403–19424 (2021). https://doi.org/10.1007/s10853-021-06547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06547-0

Navigation