Skip to main content
Log in

High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-crystalline BiFeO3 nanoparticles have been synthesized through a simple chemical coprecipitation process using bismuth and iron nitrates. By employing both X-ray diffraction and electron diffraction, the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure. X-ray photoelectron spectroscopy investigation shows that Fe element exists as the Fe3+ valence state in the BiFeO3 nanoparticles. UV–Vis absorption spectrum indicates that the absorption cut-off wavelength of the nanoparticles is about 580 nm, corresponding to the energy bandgap of 2.10 eV. The BiFeO3 nanoparticles exhibited an efficient ultraviolet photocatalytic activity, more than 92% of methyl orange was decolorized after 260 min UV irradiation. Unexpectedly, the BiFeO3 nanoparticles do not show any efficient visible light photocatalytic activity, although the nanoparticles absorb visible light in the wavelength range of 400–580 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. J.R. Cheng, J. Appl. Phys. 94, 5153 (2003)

    Article  CAS  ADS  Google Scholar 

  3. T. Sun, Z.X. Pan, V.P. Dravid, Appl. Phys. Lett. 89, 163117 (2006)

    Article  ADS  Google Scholar 

  4. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, Appl. Phys. Lett. 91, 062510 (2007)

    Article  ADS  Google Scholar 

  5. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Appl. Phys. Lett. 89, 102506 (2006)

    Article  ADS  Google Scholar 

  6. K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  PubMed  ADS  Google Scholar 

  7. J. Luo, P.A. Maggard, Adv. Mater. 18, 514 (2006)

    Article  CAS  Google Scholar 

  8. U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008)

    Article  ADS  Google Scholar 

  9. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  CAS  Google Scholar 

  10. M.M. Kumar, V.R. Palkar, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  ADS  Google Scholar 

  11. Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, J. Am. Ceram. Soc. 90, 3673 (2007)

    Article  CAS  Google Scholar 

  12. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  CAS  ADS  Google Scholar 

  13. J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, X.B. Chen, Chem. Mater. 19, 3598 (2007)

    Article  CAS  Google Scholar 

  14. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano. Lett. 7, 766 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. C. Chen, J. Cheng, S. Yu, L.J. Che, Z.Y. Meng, J. Cryst. Growth 291, 135 (2006)

    Article  CAS  ADS  Google Scholar 

  16. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203a (2005)

    Article  Google Scholar 

  17. D.A. Chang, P. Lin, T.Y. Tseng, J. Appl. Phys. 77, 4445 (1995)

    Article  CAS  ADS  Google Scholar 

  18. K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  PubMed  ADS  Google Scholar 

  19. F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, Appl. Phys. Lett. 89, 092910 (2006)

    Article  ADS  Google Scholar 

  20. M. Oshikiri, M. Boero, J.H. Ye, J. Chem. Phys. 117, 7313 (2002)

    Article  CAS  ADS  Google Scholar 

  21. J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Ed. 43, 4463 (2004)

    Article  CAS  Google Scholar 

  22. H.G. Kim, D.W. Hwang, J.S. Lee, J. Am. Chem. Soc. 126, 8912 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, J. Phys. Chem. B. 109, 22432 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Foundation of Doctoral Programs in University (20070512002), the Science Foundation for Excellent Young Scientists of Shandong Province (JQ200818) and the Program for Science and Technology of Qingdao City (08-1-3-13-jch), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Qi or Chaojing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Qi, Y. & Lu, C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. J Mater Sci: Mater Electron 21, 380–384 (2010). https://doi.org/10.1007/s10854-009-9928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9928-x

Keywords

Navigation