Skip to main content
Log in

Structural and optical properties of Ag2SeTe nano thin films prepared by thermal evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting Ag2SeTe thin films were prepared with different thicknesses onto glass substrates at room temperature using thermal evaporation technique. The structural properties were determined as a function of thickness by XRD exhibiting no preferential orientation along any plane, however the films are found to have peaks corresponding to mixed phase. The XRD studies were used to calculate the crystallite size and microstrain of the Ag2SeTe films. The calculated microstructure parameters reveal that the crystallite size increases and micro strain decreases with increasing film thickness. The refractive index, dielectric constants and thereby the optical bandgap of the films were calculated from transmittance spectral data recorded in the range 400–1200 nm by UV–VIS-Spectrometer. The direct optical bandgap of the Ag2SeTe thin films deposited on glass substrates with different thicknesses 50–230 nm were found to be in the range 1.48–1.59 eV. The carrier density value is estimated to be around 9.8 × 1021 cm−1 for the film thickness of 150 nm. The compositions estimated from the optical band gap studies reveal a value of 0.75 for Tellurium concentration. These structural and optical parameters are found to be very sensitive to the thin film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.L. Wang (ed.), Nanowires and Nanobelts: Materials, Properties and Devices (Kluwer Press, Norwell, MA, 2003)

    Google Scholar 

  2. B. Pejova, M. Najdoskia, I. Grozdanov, S.K. Dey, Mater. Lett. 43, 269 (2000)

    Article  CAS  Google Scholar 

  3. V.D. Das, D. Karunakaran, Phys. Rev. B 39, 10872 (1989)

    Article  CAS  Google Scholar 

  4. M. Ferhat, J. Nagao, J. Appl. Phys. 88, 813 (2000)

    Article  CAS  Google Scholar 

  5. R. Xu, A. Husmann, T.F. Rosenbaum, M.L. Saboungi, J.E. Enderby, P.B. Littlewood, Nature 57, 390 (1997)

    Google Scholar 

  6. Y.J. Glanville, D.G. Narehood, P.E. Sokol, A. Amma, T. Mallouk, J. Mater. Chem. 12, 2433 (2002)

    Article  CAS  Google Scholar 

  7. B. Gates, B. Mayers, Y.Y. Wu, Y.G. Sun, B. Cattle, P.D. Yang, Y.N. Xia, Adv. Funct. Mater. 12, 679 (2002)

    Article  CAS  Google Scholar 

  8. J.P. Xiao, Y. Xie, R. Tang, W. Luo, J. Mater. Chem. 12, 1148 (2002)

    Article  CAS  Google Scholar 

  9. T. Ohtani, K. Maruyama, K. Ohshima, Mater. Res. Bull. 32, 343 (1997)

    Article  CAS  Google Scholar 

  10. P. Monnoyer, J.B. Nagy, V. Buschmann, A. Fonseca, L. Jeunieau, P. Piedigrosso, G.V. Tendeloo, NATO ASI Ser. 3(18), 505 (1996)

    Google Scholar 

  11. A.M.D. Becdelievre, J. Amosse, M.J. Barbier, Mater. Res. Bull. 5, 367 (1970)

    Article  Google Scholar 

  12. Z.Y. Jiang, Z.X. Xie, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng, Chem. Phys. Lett. 368, 425 (2003)

    Article  CAS  Google Scholar 

  13. J. Hu, B. Deng, Q. Lu, K. Tang, R. Jiang, Y. Qian, G. Zhou, H. Cheng, Chem. Commun. 8, 715 (2000)

    Article  Google Scholar 

  14. B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)

    Article  CAS  Google Scholar 

  15. R. Chen, D. Xu, G. Guo, L. Gui, Electrochem. Commun. 5, 579 (2003)

    Article  CAS  Google Scholar 

  16. Y. Cui, G. Chen, J. Ren, M. Shao, Y. Xie, Y. Qian, J. Sol. Stat. Chem. 172, 17 (2003)

    Article  CAS  Google Scholar 

  17. M.-Z. Xue, S.-C. Cheng, J. Yao, Z.-W. Fu, Electrochim. Acta 51, 3287 (2006)

    Article  CAS  Google Scholar 

  18. P. Junod, Helv. Phys. Acta 32, 567 (1959)

    CAS  Google Scholar 

  19. R. Dalves, R. Gill, J. Appl. Phys. 19, 753 (1957)

    Google Scholar 

  20. S. Gopal, C. Viswanathan, B. Karunagaran, Sa.K. Narayandass, D. Mangalaraj, J. Yi, Cryst. Res. Technol. 40(6), 557 (2005)

    Article  CAS  Google Scholar 

  21. R. Singh, R. Kumara, S.K. Sharmab, S.K. Chakarvartic, Dig. J. Nanomater. Bios. 1(4), 149 (2006)

    Google Scholar 

  22. B. Pejova, M. Najdoski, I. Grozdanov, S.K. Dey, Mater. Lett. 43, 269 (2000)

    Article  CAS  Google Scholar 

  23. H.W. Hillhouse, M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245 (2009)

    Article  CAS  Google Scholar 

  24. R. Chandramohan, T. Mahalingam, J.P. Chu, P.J. Sebastian, Sol. Energy. Mater. Sol. Cells 81, 371 (2004)

    Article  CAS  Google Scholar 

  25. S. Thanikaikarasan, T. Mahalingam, M. Raja, T. Kim, Y.D. Kim, J. Mater. Sci. Mater. Electron 20, 727 (2009)

    Article  CAS  Google Scholar 

  26. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  CAS  Google Scholar 

  27. P. Sharma, V. Sharma, S.C. Katyal, Chalcogen. Lett. 3(10), 73 (2006)

    CAS  Google Scholar 

  28. J.Y.W. Seto, J. Appl. Phys. 46, 12–5247 (1975)

    Article  Google Scholar 

  29. H.A. Macleod, Thin-Film Optical Filters (Adam Hilger Ltd, Bristol, 1986), p. 13

    Book  Google Scholar 

  30. H. Neumann, Sol. Cells 16, 317 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Chandramohan or A. John Peter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayan, C., Pandiaraman, M., Soundararajan, N. et al. Structural and optical properties of Ag2SeTe nano thin films prepared by thermal evaporation. J Mater Sci: Mater Electron 22, 545–550 (2011). https://doi.org/10.1007/s10854-010-0175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0175-y

Keywords

Navigation