Skip to main content
Log in

Dielectric behavior and Raman spectra of lanthanum-doped lead magnesium niobate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lanthanum-doped lead magnesium niobate (PLMN) ceramics were fabricated by columbite route. The effects of La-addition on dielectric behavior and Raman spectra were investigated. The trivalent La3+-doping showed inhibiting effects on grain growth process. The average grain size decreased and pyrochlore phase was detected along with the perovskite phase above 2 mol% La-addition. Temperature dependence of permittivity measured at 1 kHz was investigated. Due to La3+-doping, the maximum of dielectric constant decreased and the temperature of the maximum permittivity moved to lower temperature. An oval-form hysteresis loop was observed on La-doped (3 mol%) lead magnesium niobate (PMN) sample, which revealed that La-doped PMN owned partially normal ferroelectric feature. Raman spectra showed a shift of the peak around 270 cm−1, which identified a distortion of the center symmetric ordered structure and enforced B-site compositional fluctuation. The shift of A1g mode (around 780 cm−1) indicated that degree of chemical order at B-site increased and PLMN contained 1:1 B-site ordered nanoregion (clusters) with Fm-3m symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PMN:

Lead magnesium niobate

MLCC:

Multilayer ceramic capacitors

DPT:

Diffuse phase transition

PLMN:

\( \left( {{\text{Pb}}_{{1-{\text{x}}}} {\text{La}}_{\text{x}} } \right)\left[ {{\text{Mg}}_{{\left( {1{\text{ + x}}} \right) / 3}} {\text{Nb}}_{{\left( { 2 {\text{--x}}} \right)/ 3}} } \right]{\text{O}}_{ 3} \)

FWHM:

The Full width at half maximum

MN:

\( {\text{Mg}}_{{\left( {1 + {\text{x}}} \right)/3}} {\text{Nb}}_{{\left( {2 - {\text{x}}} \right)/3}} {\text{O}}_{{2 - {\text{x}}/2}} \)

PVA:

Polyvinyl alcohol

SEM:

Scanning Electronic Microscopy

XRD:

X-ray diffraction

T m :

The temperature of the maximum permittivity

ε m :

The maximum permittivity

tanδ :

Dissipation loss

References

  1. G.A. Smolensky, A.I. Agranovskaya, Sov. Phys. Sol. State 1, 1429 (1959)

    Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797 (1999)

    Article  CAS  Google Scholar 

  3. S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, J. Am. Ceram. Soc. 67, 311 (1984)

    Article  CAS  Google Scholar 

  4. K. Uchino, Am. Ceram. Soc. Bull. 65, 647 (1986)

    CAS  Google Scholar 

  5. G.A. Smolensky, J. Phys. Soc. Jpn. 28, 26 (1970)

    Google Scholar 

  6. A. Ianculescu, A. Braileanu, I. Pasuk, C. Popescu, J. Therm. Anal. cal. 80, 663 (2005)

    Article  CAS  Google Scholar 

  7. D. viehland, J.-F. Li, J. Appl. Phys. 74, 4121 (1993)

    Article  CAS  Google Scholar 

  8. J.A. Lima, W. Paraguassu, P.T.C. Freire, A.G. Souza Filho, C.W.A. Paschoal et al., J. Raman spectrosc. 40, 1144 (2009)

    Article  CAS  Google Scholar 

  9. P. Colomban, A. Slodczyk, Opt. Mater. 31, 1759 (2009)

    Article  CAS  Google Scholar 

  10. I.G. Siny, R.S. Katiyar, Ferroelectrics 223, 35 (1999)

    Article  CAS  Google Scholar 

  11. F. Jiang, S. kojima, C. Zhao, C. Feng, J. Appl. Phys. 88, 3608 (2000)

    Article  CAS  Google Scholar 

  12. S.L. Swartz, T.R. Shrout, Mat. Res. Bull. 17, 1245 (1982)

    Article  CAS  Google Scholar 

  13. A. Mergen, W.E. Lee, J. Eur. Ceram. Soc. 17, 1033 (1997)

    Article  Google Scholar 

  14. A. Ianculescu, A. Braileanu, M. Viviani, L. Mitoseriu, J. Eur. Ceram. Soc. 27, 4375 (2007)

    Article  CAS  Google Scholar 

  15. D.M. Fanning, I.K. Robinson, S.T. Jung, E.V. Colla, D.D. Viehland, D.A. Payne, J. Appl. Phys. 87, 840 (2000)

    Article  CAS  Google Scholar 

  16. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  CAS  Google Scholar 

  17. G.A. Samara, J. Phys. Condens. Mater. 15, 367 (2003)

    Article  Google Scholar 

  18. F. Guerrero, Y. Leyet, M. Venet, J. Guerra, S. de Los, J.A. Eiras, J. Eur. Ceram. Soc. 27, 4041 (2007)

    Article  CAS  Google Scholar 

  19. R. Grigalaitis, J. Banys, J. Macutkevic, R. Adomavicius, A. Krotkus, K. Bormanis, A. Sternberg, J. Eur. Ceram. Soc. 30, 613 (2010)

    Article  CAS  Google Scholar 

  20. F. Jiang, S. kojima, C. Zhao, C. Feng, Appl. Phys. Lett. 79, 3938 (2001)

    Article  CAS  Google Scholar 

  21. E. Husson, L. Abello, A. Morell, Mater. Res. Bull. 25, 539 (1990)

    Article  CAS  Google Scholar 

  22. O. Svitelskiy, J. Toulouse, Phys. Rev. B 68, 104107 (2003)

    Article  Google Scholar 

  23. I.G. Siny, S.G. Lushnikov, R.S. Katiyar, V.H. Schmidt, Ferroelectrics 226, 191 (1999)

    Article  CAS  Google Scholar 

  24. E. Husson, L. Abello, A. Morell, Mater. Res. Bull. 26, 1167 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Liu, J., Li, H. et al. Dielectric behavior and Raman spectra of lanthanum-doped lead magnesium niobate ceramics. J Mater Sci: Mater Electron 22, 1188–1194 (2011). https://doi.org/10.1007/s10854-010-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0282-9

Keywords

Navigation