Skip to main content
Log in

Effect of formaldehyde gas adsorption on the electrical conductivity of Pd-doped TiO2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.5 wt% Pd-doped titanium oxide thin films were obtained by dip-coating on silicon substrates. The films were compacted by annealing in air at 300 and 500 °C. Temperature dependent electrical conductivity measurements were performed in the temperature range 373–623 K, in different environments (air, methane, acetone, ethanol, formaldehyde and liquefied petroleum gas), to test the films sensing gas properties. Formaldehyde was found to be the test gas that produces the most significant changes in the electrical conductivity of the studied films. This was the reason why it was chosen to investigate its effect on their electrical conductivity. A model was proposed, the model of the potential fluctuations at grain boundaries. A comparison between some parameters obtained in the proposed model was performed as a function of annealing temperature, and as a function of gas atmosphere. The values of the mean barrier height and the standard deviation were estimated to range between 0.336–0.588 eV and 0.175–0.199 eV, respectively. It was found that formaldehyde leads to a rather sharp decrease in the values of the barrier height and the standard deviation, and to an increase in the conductivity. We have observed the best sensing gas performance for the films annealed at 300 °C, comparing to their counterparts annealed at 500 °C, explained by the lowest values of the barrier energy height and the standard deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Formaldehyde Epidemiology, Toxicology and Environmental Group, Formaldehyde and Facts About Health Effects (2002). http://www2.dupont.com/Plastics/en_US/assets/downloads/processing/FETEG_Facts.pdf

  2. L. Feng, Y.J. Liu, X.D. Zhou, J.M. Hu, J. Colloid Interface Sci. 284, 378 (2005)

    Article  CAS  Google Scholar 

  3. O. Hernandez, L. Rhomberg, K. Hogan, C. Siegel-Scott, D. Lai, G. Grindstaff, M. Henry, J.A. Cotruvo, J. Hazard. Mater. 39(2), 161 (1994)

    Article  CAS  Google Scholar 

  4. J. Flueckiger, F.K. Ko, K.C. Cheung, Sensors 9, 9196 (2009)

    Article  CAS  Google Scholar 

  5. N. Iftimie, M. Crisan, A. Braileanu, D. Crisan, A. Nastuta, G.B. Rusu, P.D. Popa, D. Mardare, J. Optoelectron. Adv. M. 10, 9–2363 (2008)

    Google Scholar 

  6. H. Tang, K. Prasad, R. Sanjinès, F. Lévy, Sensor Actuat. B 26–27, 71 (1995)

    Article  Google Scholar 

  7. F. Cosandey, G. Skandan, A. Singhal, JOM-e, 52(10) (2000), http://www.tms.org/pubs/journals/JOM/0010/Cosandey/Cosandey-0010.html

  8. W.K. Choi, S.K. Song, J.S. Cho, Y.S. Yoon, D. Choi, H.-J. Jung, S.K. Koh, Sensor Actuat. B 40, 21 (1997)

    Article  CAS  Google Scholar 

  9. N. Yamazoe, Sensor Actuat. B 5, 7 (1991)

    Article  Google Scholar 

  10. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, J. Non-Cryst. Solids 354, 4944 (2008)

    Article  CAS  Google Scholar 

  11. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, Physica B 404, 1423 (2009)

    Article  CAS  Google Scholar 

  12. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, J. Mater, Sci. Mater. Electron. 21, 692 (2010)

    Article  CAS  Google Scholar 

  13. A. Yildiz, N. Serin, M. Kasap, T. Serin, D. Mardare, J. Alloys Compd. 493, 227 (2010)

    Article  CAS  Google Scholar 

  14. T. Serin, A. Yildiz, N. Serin, N. Yıldırım, F. Özyurt, M. Kasap, J. Electron. Mater. 39, 1152 (2010)

    Article  CAS  Google Scholar 

  15. A. Yildiz, A.A. Alsaç, T. Serin, N. Serin, J. Electron. Mater (2011). doi:10.1007/s10854-010-0228-2

    Google Scholar 

  16. A. Yildiz, F. Iacomi, D. Mardare, J. Appl. Phys 108, 083701 (2010)

    Article  Google Scholar 

  17. H.J. Höfler, H. Hahn, R.S. Averback, Defect Diffus. Forum 75, 195 (1991)

    Article  Google Scholar 

  18. J.Y.W. Seto, J. Appl. Phys 46, 5247 (1975)

    Article  CAS  Google Scholar 

  19. J.H. Werner, Solid State Phenom. 37, 213 (1994)

    Article  Google Scholar 

  20. D. Crisan, N. Dragan, M. Crisan, M. Raileanu, A. Braileanu, M. Anastasescu, A. Ianculescu, D. Mardare, D. Luca, V. Marinescu, A. Moldovan, J. Phys. Chem. Solids 69, 2548 (2008)

    Article  CAS  Google Scholar 

  21. D. Mardare, G.I. Rusu, J. Non-Cryst. Solids 28–30, 1395 (2010)

    Article  Google Scholar 

  22. T. Wolkenstein, Electronic Process on Semiconductor Surfaces During Chemisorption (Consultats Bureau, New York, 1991)

    Book  Google Scholar 

  23. S. Seeger, R. Mientus, J. Röhrich, E. Strub, W. Bohne, K. Ellmer, Surf. Coat. Technol. 200, 218 (2005)

    Article  CAS  Google Scholar 

  24. F. Kopnov, A. Yoffe, G. Leitus, R. Tenne, Phys. Stat. Sol. (b) 243, 1229 (2006)

    Article  CAS  Google Scholar 

  25. J.R. Ares, A. Pascual, I.J. Ferrer, C.R. Sanchez, Thin Solid Films 451, 233 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

D. Mardare acknowledges the financial support from the grants PCCE-ID_76 and 12-128/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yildiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, A., Crisan, D., Dragan, N. et al. Effect of formaldehyde gas adsorption on the electrical conductivity of Pd-doped TiO2 thin films. J Mater Sci: Mater Electron 22, 1420–1425 (2011). https://doi.org/10.1007/s10854-011-0324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0324-y

Keywords

Navigation