Skip to main content
Log in

Reliability behavior of lead-free solder joints in electronic components

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With more consumer products moving towards environmentally friendly packaging, making solder Pb-free has become an urgent task for electronics assemblies. Solder joints are responsible for both electrical and mechanical connections. Solder joint does not have adequate ductility to ensure the repeated relative displacements due to the mismatch between expansion coefficients of the chip carrier and the circuit board. Materials behavior of solder joints involves a creep–fatigue interaction, making it a poor material for mechanical connections. The reliability of solder joints of electronics components has been found playing a more important role in service for microelectronics components and micro-electro-mechanical systems. So many researchers in the world investigated reliability of solder joints based on finite element simulation and experiments about the electronics devices, such as CR, QFP, QFN, PLCC, BGA, CSP, FCBGA and CCGA, which were reviewed systematically and extensively. Synchronously the investigation on reliability of solder joints was improved further with the high-speed development of lead-free electronic packaging, especially the constitutive equations and the fatigue life prediction equations. In this paper, the application and research status of constitutive equations and fatigue life prediction equations were reviewed, which provide theoretic guide for the reliability of lead-free solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.O. Kim, J.P. Jung, J.H. Lee, J. Suh, H.S. Kang, Effects of laser parameters on the characteristics of a Sn-3.5wt.%Ag solder joint. Met. Mater. Int. 15(1), 119–123 (2009)

    Article  CAS  Google Scholar 

  2. M.N. Wang, J.Q. Wang, H. Feng, W. Ke, Effects of microstructure and temperature on corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder. J. Mater. Sci.: Mater. Electron. 23(1), 148–155 (2012)

    Article  CAS  Google Scholar 

  3. C.D. Zou, Y.L. Gao, B. Yang, Q.J. Zhai, Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression. J. Mater. Sci.: Mater. Electron. 23(1), 2–7 (2012)

    Article  CAS  Google Scholar 

  4. W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, J.F. Guan, Effect of multiple reflow processes on the reliability of ball grid array (BGA) solder joints. J. Alloy. Compd. 414(1–2), 123–130 (2006)

    Article  CAS  Google Scholar 

  5. C. Yu, Y. Yang, P.L. Li, J.M. Chen, H. Lu, Suppression of Cu3Sn and Kirkendall voids at Cu/Sn-3.5Ag solder joints adding a small amount of Ge. J. Mater. Sci.: Mater. Electron. 23(1), 56–60 (2012)

    Article  CAS  Google Scholar 

  6. L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen, S.L. Yu, Effects of rare earths on properties on properties and microstructures of lead-free solder alloys. J. Mater. Sci.: Mater. Electron. 20(8), 685–694 (2009)

    Article  CAS  Google Scholar 

  7. D.H. Kim, Reliability Study of SnPb and SnAg Solder Joints in PBGA Packages. The University of Texas at Austin (2007)

  8. A. Schubert, R. Dudek, H. Walter, E. Jung, A. Gollhardt, B. Michel, H. Reichl, Reliability assessment of flip-chip assemblies with lead-free solder joints, in Proceedings of 52nd Electronic Components and Technology Conference, pp 1246–1255 (2002)

  9. A. Shawkret, Study on the high temperature reliability of lead-free surface mount solder joints (Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 2001)

    Google Scholar 

  10. S.B. Xue, Y.F. Hu, S.L. Yu, Reliability of CBGA solder joint under thermal cycling. Trans. China Weld. Inst. 26(10), 81–83 (2005)

    Google Scholar 

  11. C. Kanchanomai, Y. Miyashita, Y. Mutoh, Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb. Int. J. Fatigue 24(6), 671–683 (2002)

    Article  CAS  Google Scholar 

  12. T. Hannach, H. Worrack, W.H. Müller, T. Hauck, Creep in microelectronic solder joints: finite element simulations versus semi-analytical methods. Arch. Appl. Mech. 79(6–7), 605–617 (2009)

    Article  Google Scholar 

  13. S.B. Xue, H. Wang, Y.F. Hu, Effects of thermal cycling on shear strength of solder joints of laminar ceramic resistor. Trans. Nonferrous Soc. China 15(S3), 305–310 (2005)

    Google Scholar 

  14. S.B. Xue, Z.J. Han, H. Wang, J.X. Wang, Fracture mechanism of lead-free solder joints of rectangular chip component. Trans. China Weld. Inst. 27(8), 23–26 (2006)

    CAS  Google Scholar 

  15. P. Hegde, D.C. Whalley, V.V. Silberschmidt, Creep damage study at powercycling of lead-free surface mount device. Comput. Mater. Sci. 45(3), 638–645 (2009)

    Article  CAS  Google Scholar 

  16. C. Han, B. Song, Development of life prediction model for lead-free solder at chip resistor, in 8th Electronics Packaging Technology Conference, pp. 781–786 (2006)

  17. Y. Qi, R. Lam, H.R. Ghorbani, P. Snugovsky, J.K. Spelt, Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints. Microelectron. Reliab. 46(2–4), 574–588 (2006)

    CAS  Google Scholar 

  18. Z.J. Han, S.B. Xue, J.X. Wang, X. Zhang, L. Zhang, S.L. Yu, H. Wang, Mechanical properties of QFP micro-joints soldered with lead-free solders using diode laser soldering technology. Trans. Nonferrous Metals Soc. China 18(4), 814–818 (2008)

    Article  CAS  Google Scholar 

  19. L. Zhang, S.B. Xue, Z.J. Han, J.X. Wang, L.L. Gao, Z. Sheng, Mechanical properties of fine pitch devices solder joints based on creep model. Chin. J. Mech. Eng. 21(6), 82–85 (2008)

    Article  Google Scholar 

  20. L. Zhang, S.B. Xue, G. Zeng, Z.J. Han, S.L. Yu, Study on mechanical properties and numerical simulation of fine pitch devices solder joints. Trans. China Weld. Inst. 29(10), 89–92 (2008)

    Google Scholar 

  21. L. Zhang, S.B. Xue, L.L. Gao, Z. Sheng, G. Zeng, Y. Chen, S.L. Yu, Properties of SnAgCu/SnAgCuCe solder joints for electronic packaging. J. Mater. Sci.: Mater. Electron. 21(6), 635–642 (2010)

    Article  CAS  Google Scholar 

  22. F.X. Chen, J.H.L. Pang, B.S. Xiong, L.H. Xu, T.H. Low, Lead free solder joint reliability characterization for PBGA, PQFP and TSSOP assembilities, in Electronic Components and Technology Conference (2005)

  23. Y.X. Wu, S.B. Xue, Z.J. Han, J.X. Wang, Effects of lead widths and pitches on reliability of quad flat package (QFP) solder joints. Chin. J. Mech. Eng. 20(4), 40–43 (2007)

    Article  Google Scholar 

  24. L. Zhang, S.B. Xue, F.Y. Lu, Z.J. Han, Numerical simulation on solder joints of QFP device with different substrate materials and thicknesses. Trans. China Weld. Inst. 29(1), 35–39 (2008)

    Google Scholar 

  25. T.Y. Tee, Z.W. Zhong, Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis. Microelectron. Reliab. 44(1), 105–114 (2004)

    Article  Google Scholar 

  26. T.Y. Tee, H.S. Ng, D. Yap, Z.W. Zhong, Comprehensive board-level solder joint reliability modeling and testing of QFN and powerQFN packages. Microelectron. Reliab. 43(8), 1329–1338 (2003)

    Article  Google Scholar 

  27. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, E. Beyne, Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47(2–3), 259–265 (2007)

    CAS  Google Scholar 

  28. L. Zhang, S.B. Xue, F.Y. Lu, Z.J. Han, J.X. Wang, Numerical simulation of solder joints and reliability analysis of PLCC components with J-shape leads. China Weld. 17(2), 37–41 (2008)

    Google Scholar 

  29. H.T. Chen, C.Q. Wang, M.Y. Li, Y.H. Tian, Experimental and finite element method studies of J-lead solder joint reliability. J. Mater. Sci. Technol. 21(3), 419–422 (2005)

    CAS  Google Scholar 

  30. Y.X. Wu, S.B. Xue, Y.F. Hu, Finite element analysis on reliability of solder joint of J-lead. Trans. China Weld. Inst. 26(12), 85–88 (2005)

    Google Scholar 

  31. Y.X. Wu, Research on the reliability of solder joints and optimum simulation for QFP gull wing lead sizes (Nanjing University of Aeronautics and Astronautics, Nanjing, 2007)

    Google Scholar 

  32. W. Dauksher, J. Lau, A finite-element-based solder-joint fatigue-life prediction methodology for Sn-Ag-Cu ball-grid-array packages. IEEE Trans. Device Mater. Reliab. 9(2), 231–235 (2009)

    Article  CAS  Google Scholar 

  33. L.J. Ladani, A. Dasgupta, A meso-scale evolution model for cyclic fatigue of viscoplastic materials. Int. J. Fatigue 31(4), 703–711 (2009)

    Article  CAS  Google Scholar 

  34. F. Liu, G. Meng, M. Zhao, J.F. Zhao, Experimental and numerical analysis of BGA lead-free solder joint reliability under board-level drop impact. Microelectron. Reliab. 49(1), 79–85 (2009)

    Article  Google Scholar 

  35. T. Kangasvieri, O. Nousiainen, J. Putaala, R. Rautioaho, J. Vähäkangas, Reliability and RF performance of BGA solder joints with plastic-core solder balls in LTCC/PWB assemblies. Microelectron. Reliab. 46(8), 1335–1347 (2006)

    Article  Google Scholar 

  36. X. Qu, Z.Y. Chen, B. Qi, T. Lee, J.J. Wang, Board level drop test and simulation of leaded and lead-free BGA-PCB assembly. Microelectron. Reliab. 47(12), 2197–2204 (2007)

    Article  Google Scholar 

  37. T.H. Wang, Y.S. Lai, J.D. Wu, Effect of underfill thermomechanical properties on thermal cycling fatigue reliability of flip-chip ball grid array. J. Electron. Packag. 126(4), 560–564 (2004)

    Article  Google Scholar 

  38. L. Zhang, S.B. Xue, Z.J. Han, F.Y. Lu, S.L. Yu, Z.M. Lai, Fatigue life prediction of SnAgCu solder joints of FCBGA device. Trans. China Weld. Inst. 29(7), 85–88 (2008)

    Google Scholar 

  39. S. Cho, J. Choi, H. Kim, Study on the behavior characteristics of solder balls for FCBGA package. Met. Mater. Int. 15(2), 299–305 (2009)

    Article  CAS  Google Scholar 

  40. J.L. Wang, H.K. Lim, H.S. Lew, W.T. Saw, C.H. Tan, A testing method for assessing solder joint reliability of FCBGA packages. Microelectron. Reliab. 44(5), 833–840 (2004)

    Article  Google Scholar 

  41. T.T. Mattila, P. Marjamäki, J.K. Kivilahti, Reliability of CSP interconnections under mechanical shock loading conditions. IEEE Trans. Compon. Packag. Technol. 29(4), 787–795 (2006)

    Article  CAS  Google Scholar 

  42. M. Gonzalez, B. Vandevelde, E. Beyne, Thermo-mechanical analysis of a chip scale package (CSP) using lead free and lead containing solder materials, in European Microelectronics and Packaging Symposium, pp. 247–252 (2004)

  43. P. Sun, P. Hochstenbach, W.D.V. Driel, G.Q. Zhang, Fracture morphology and mechanism of IMC in low-Ag SAC solder/UBM (Ni(P)-Au) for WLCSP. Microelectron. Reliab. 48(8–9), 1167–1170 (2008)

    CAS  Google Scholar 

  44. B. Vandevelde, E. Beyne, K. Zhang, J. Caers, D. Vandepitte, M. Baelmans, Parameterized modeling of thermomechanical reliability for CSP assemblies. J. Electron. Packag. 125(4), 498–505 (2003)

    Article  CAS  Google Scholar 

  45. S.W. Yoon, C.J. Park, S.H. Hong, J.T. Moon, I.S. Park, H.S. Chun, Interfacial reaction and solder joint reliability of Pb-free solders in lead fram chip scale package (LF-CSP). J. Electron. Mater. 29(10), 1233–1240 (2000)

    Article  CAS  Google Scholar 

  46. A. Mertol, Application of the Taguchi method to chip scale package (CSP) design. IEEE Trans. Adv. Packag. 23(2), 266–276 (2000)

    Article  Google Scholar 

  47. J.H.L. Pang, D.Y.R. Chong, Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models. IEEE Trans. Adv. Packag. 24(4), 499–506 (2001)

    Article  Google Scholar 

  48. X. Han, H. Ding, X.J. Sheng, B. Zhang, Thermal fatigue life time prediction of Sn-3.5Ag lead-free solder joint for chip scale package. Chin. J. Semiconduct. 27(9), 1695–1700 (2006)

    Google Scholar 

  49. Q. Wang, H. Liang, Y.J. Xu, Y. Liu, Solder joint fatigue life predictions for CSP package under power cycling. J. Zhejiang Univ. Technol. 34(2), 157–161 (2006)

    Google Scholar 

  50. J. Lau, W. Dauksher, Reliability of an 1657CCGA (ceramic column grid array) package with 95.5Sn3.9Ag0.6Cu lead-free solder paste on PCBS (printed circuit boards). J. Electron. Packag. 127(2), 96–105 (2005)

    Article  CAS  Google Scholar 

  51. B.Z. Hong, S.K. Ray, Ceramic column grid array technology with coated solder columns, in Electronic Components and Technology Conference (2000)

  52. L.L. Gao, S.B. Xue, L. Zhang, Z. Sheng, Finite element analysis on influencing factors of soldered column reliability in a CCGA device. Trans. China Weld. Inst. 29(7), 93–96 (2008)

    CAS  Google Scholar 

  53. S.B. Park, R. Joshi, Comparison of thermo-mechanical behavior of lead-free copper and tin-lead column grid array packages. Microelectron. Reliab. 48(5), 763–772 (2008)

    Article  CAS  Google Scholar 

  54. R. Ghaffarian, Thermal cycle reliability and failure mechanisms of CCGA and PBGA assemblies with and without corner staking. IEEE Trans. Compon. Packag. Technol. 31(2), 285–296 (2008)

    Article  Google Scholar 

  55. A. Perkins, S.K. Sitaraman, Analysis and prediction of vibration-induced solder joint failure for a ceramic column grid array package. J. Electron. Packag. 130(1), 1–11 (2008)

    Article  CAS  Google Scholar 

  56. E.M. Ingalls, M. Cole, J. Jozwiak, C. Milkovich, J. Stack, in Improvement in reliability with CCGA column density increase to 1 mm pitch. Electronic Components and Technology Conference (1998)

  57. A. Perkins, S.K. Sitaraman, in A study into the sequencing of thermal cycling and vibration tests. Electronic Components and Technology Conference, pp. 584–592 (2008)

  58. R.T. Winslow, Challenges in modification of electronic components. IEEE Trans. Compon. Packag. Technol. 30(2), 361–363 (2007)

    Article  Google Scholar 

  59. R. Wu, F.P. Mccluskey, in Constitutive relations of indium solder joint in cold temperature electronic packaging based on Anand model. 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Florida, USA, May, pp. 683–686 (2008)

  60. L. Anand, Constitutive equations for hot-working of metals. Int. J. Plast 1(3), 213–231 (1985)

    Article  Google Scholar 

  61. S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of metals. Int. J. Plast 5(3), 95–130 (1989)

    Article  Google Scholar 

  62. G.Z. Wang, Z.N. Chen, Viscoplastic Anand constitutive relations of tin-lead solder alloy. Chin. J. Appl. Mech. 17(3), 133–139 (2000)

    Google Scholar 

  63. Y.X. Wu, S.B. Xue, L. Zhang, X. Huang, Optimum simulation and prediction on thermal fatigue life of solder joints of QFP devices. Trans. China Weld. Inst. 27(8), 99–102 (2006)

    Google Scholar 

  64. L. Zhang, S.B. Xue, S.L. Yu, Z.J. Han, L.L. Gao, F.Y. Lu, Z. Sheng, Application of FEM analysis in reliability of micro-solder joints. Electr. Weld. Mach. 38(9), 13–21,72 (2008)

    Google Scholar 

  65. L. Zhang, S.B. Xue, L.L. Gao, Y. Chen, S.L. Yu, Z. Sheng, Determination of Anand parameters for SnAgCuCe solders. Modell. Simul. Mater. Sci. Eng. 17(7), 075014 (2009)

    Article  CAS  Google Scholar 

  66. X. Chen, G. Chen, M. Sakane, Prediction of stress-strain relationship with an improved Anand constitutive model for lead-free solder Sn-3.5Ag. IEEE Trans. Compon. Packag. Technol. 28(1), 111–116 (2005)

    Article  Google Scholar 

  67. D. Bhate, D. Chan, G. Subbarayan, C. Chiu, V. Gupta, D.R. Edwards, Constitutive behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu alloys at creep and low strain rate regimes. IEEE Trans. Compon. Packag. Technol. 31(3), 622–633 (2008)

    Article  CAS  Google Scholar 

  68. N. Bai, X. Chen, H. Gao, Simulation of uniaxial tensile properties for lead-free solders with modified Anand model. Mater. Des. 30(1), 122–128 (2009)

    Article  CAS  Google Scholar 

  69. L. Zhang, X. Chen, H. Nose, M. Sakane, Stress-strain behaviors of 63Sn37Pb solder simulated by Anand model. J. Mech. Strength 26(4), 447–450 (2004)

    Google Scholar 

  70. B. Rodgers, B. Flood, F. Waldron, in Experimental determination and finite element model validation of the Anand viscoplasticity model. Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-electronics and Micro-systems, 490–496 (2005)

  71. P. Zhou, B.T. Hu, J.M. Zhou, Y. Yang, Parameter fitting of constitutive model and FEM analysis of solder joint thermal cycle reliability for lead-free solder Sn-3.5Ag. J. Central South Univ. Technol. 16(3), 339–343 (2009)

    Google Scholar 

  72. A. Yeo, C. Lee, J.H.L. Pang, Flip chip solder joint reliability analysis using viscoplastic and elastic-plastic-creep constitutive models. IEEE Trans. Compon. Packag. Technol. 29(2), 355–363 (2006)

    Article  CAS  Google Scholar 

  73. J.G. Bai, J.N. Calata, G.Q. Lu, Discussion on the reliability issues of solder-bump and direct-solder bonder power device packages having double-sided cooling capability. J. Electron. Packag. 128(3), 208–214 (2006)

    Article  CAS  Google Scholar 

  74. Q. Wang, L.H. Liang, X.F. Chen, X.H. Weng, in Experimental determination and modification of Anand model constants for Pb-free materials 95.5Sn4.0Ag0.5Cu. International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-System, 1–9 (2007)

  75. W. Wang, Z.G. Wang, A.P. Xian, J.K. Shang, Microstructure and fracture of Pb-free solder interconnects in CBGA packages under thermal cycling. Acta Metall. Sin. 42(6), 647–652 (2006)

    CAS  Google Scholar 

  76. L. Zhang, S.B. Xue, F.Y. Lu, Z.J. Han, Finite element analysis on solder joint reliability of QFP devices with different lead materials. Trans. China Weld. Inst. 28(6), 65–68 (2007)

    Google Scholar 

  77. G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde, Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J. Electron. Packag. 123(3), 247–253 (2001)

    Article  CAS  Google Scholar 

  78. X.F. Chen, L.H. Liang, Y. Liu, Q. Wang, Mechanical properties and parameter determination of Anand viscoplastic constitutive model for Pb-free alloys. Chin. J. Appl. Mech. 26(2), 248–252 (2009)

    CAS  Google Scholar 

  79. Z.N. Cheng, G.Z. Wang, L. Chen, J. Wilde, K. Becker, Viscoplastic Anand model for solder alloys and its application. Solder. Surface Mount Technol. 12(2), 31–36 (2000)

    Article  CAS  Google Scholar 

  80. J.H. Choi, A.H.M.F. Anwar, Y. Ichikawa, Observation of time-dependent local deformation of crystalline rocks using a confocal laser scanning microscope. Int. J. Rock Mech. Mining Sci. 45(3), 431–441 (2008)

    Article  Google Scholar 

  81. S. Ridout, C. Bailey, Review of methods to predict solder joint reliability under thermo-mechanical cycling. Fatigue Fract. Eng. Mater. Struct. 30(5), 400–412 (2006)

    Google Scholar 

  82. R. Darveax, K. Banerji, A. Mawer, G. Doddy, Reliability of plastic ball grid array assembly in ball grid array technology, New York (1995)

  83. S. Wiese, S. Rzepka, Time-independent elastic-plastic behaviour of solder materials. Microelectron. Reliab. 44(12), 1893–1900 (2004)

    Article  CAS  Google Scholar 

  84. H.T. Ma, Constitutive models of creep for lead-free solders. J. Mater. Sci. 44(14), 3841–3851 (2009)

    Article  CAS  Google Scholar 

  85. R.J. McCabe, M.E. Fine, Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metallurg. Mater. Trans. A 33(5), 1531–1539 (2002)

    Article  Google Scholar 

  86. S. Wiese, M. Roellig, M. Mueller, S. Bennemann, M. Petzold, K.J. Wolter, in The size effect on the creep properties of SnAgCu solder alloy. Electronic Components and Technology Conference (2007)

  87. G.S. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, Creep behavior of eutectic 80Au/20Sn solder alloy. J. Alloy. Compd. 476(1–2), 138–141 (2009)

    Article  CAS  Google Scholar 

  88. J.W. Kim, J.K. Jang, S.O. Ha, S.S. Ha, D.G. Kim, S.B. Jung, Effect of high-speed loading conditions on the fracture mode of the BGA solder joint. Microelectron. Reliab. 48(11–12), 1882–1889 (2008)

    CAS  Google Scholar 

  89. B.Z. Hong, in Thermal fatigue analysis of a CBGA package with lead-free solder fillets. InterSociety Conference on Thermal Phenomena, pp. 205–211 (1998)

  90. J.W. Kim, S.B. Jung, Design of solder joint structure for flip chip package with an optimized shear test method. J. Electron. Mater. 36(6), 690–696 (2007)

    Article  CAS  Google Scholar 

  91. F.X. Chen, J.H.L. Pang, in Thermal fatigue reliability analysis for PBGA with Sn-3.8Ag-0.7Cu solder joints. Electronics Packaging Technology Conference, pp. 787–792 (2004)

  92. Y. Qi, H.R. Ghorbani, J.K. Spelt, Thermal fatigue of SnPb and SAC resistor joints: analysis of stress-strain as a function of cycle parameters. IEEE Trans. Adv. Packag. 29(4), 690–700 (2006)

    Article  CAS  Google Scholar 

  93. J. Lau, W. Dauksher, in Effects of ramp-time on the thermal-fatigue life of SnAgCu lead-free solder joint. Electronic Components and Technology Conference, pp. 1292–1298 (2005)

  94. J.H. Lau, S.H. Pan, C. Chang, Creep analysis of wafer level chip scale package (WLCSP) with 96.5Sn-3.5Ag and 100In lead-free solder joints and microvia build-up printed circuit board. J. Electron. Packag. 124(2), 69–76 (2002)

    Article  CAS  Google Scholar 

  95. W.R. Jong, H.C. Tsai, H.T. Chang, S.H. Peng, The effects of temperature cyclic loading on lead-free solder joints of wafer level chip scale package by Taguchi method. J. Electron. Packag. 130(1), 1–10 (2008)

    Article  CAS  Google Scholar 

  96. L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Y. Chen, S.L. Yu, Z. Sheng, Creep behavior of SnAgCu solders with rare earth Ce doping. Trans. Nonferrous Metals Soc. China 19(6), 753–778 (2009)

    Google Scholar 

  97. S. Ridout, M. Dusek, C. Bailey, C. Hunt, Assessing the performance of crack detection tests for solder joint. Microelectron. Reliab. 46(12), 2122–2130 (2006)

    Article  Google Scholar 

  98. S. Wiese, E. Meusel, Characterization of lead-free solders in flip chip joints. J. Electron. Packag. 125(4), 531–538 (2003)

    Article  CAS  Google Scholar 

  99. D. Pan, I. Dutta, A mechanics-induced complication of impression creep and its solution: application to Sn-3.5Ag solder. Mater. Sci. Eng., A 379(1–2), 154–163 (2004)

    Google Scholar 

  100. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders. J. Electron. Mater. 26(7), 783–790 (1997)

    Article  CAS  Google Scholar 

  101. M. Zeng, Z.Z. Chen, B.L. Shen, D.F. Xu, Indentation creep behavior of Sn-3.5Ag-2Bi lead-free solder. Chin. J. Nonferrous Metals 18(4), 620–625 (2008)

    Google Scholar 

  102. X.Y. Li, Z.S. Wang, Thermo-fatigue life prediction methodologies for SnAgCu solder joints in flip chip assemblies. J. Mech. Strength 28(6), 893–898 (2006)

    CAS  Google Scholar 

  103. A. Schubert, R. Dudek, E. Auerswald, G.B. Michel, H. Reichl, in Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. Proceedings of 53rd Electronic Components and Technology Conference, New Orleans, USA, May, pp. 603–610 (2003)

  104. S. Wiese, E. Meusel, K. Wolter, in Microstructural dependence of constitutive properties of eutectic SnAg and SnAgCu solders. Proceeding of 53rd Electronic Components and Technology Conference (2003)

  105. D.H. Avery, W.A. Backofen, Structural basis for superplasticity. Trans. Am. Soc. Metals 58(4), 551–562 (1965)

    CAS  Google Scholar 

  106. S. Wiese, F. Feustel, E. Meusel, Characterisation of constitutive behavior of SnAg, SnAgCu and SnPb solder in flip chip joints. Sensors Actuator A Phys. 99(1–2), 188–193 (2002)

    Article  Google Scholar 

  107. H.G. Song, J.W. Morris, F. Hua, The creep properties of lead-free solder joints. J. Minerals Metals Mater. Soc. 54(6), 30–32 (2002)

    Article  CAS  Google Scholar 

  108. Y.D. Han, H.Y. Jing, S.M.L. Nai, C.M. Tan, J. Wei, L.Y. Xu, S.R. Zhang, A modified constitutive model for creep of Sn-3.5Ag-0.7Cu solder joints. J. Phys. D Appl. Phys. (2009). doi:10.1088/0022-3727/42/12/125411

  109. J. Rösler, Back-stress calculation for dislocation climb past non-interacting particles. Mater. Sci. Eng., A 339(1–2), 334–339 (2003)

    Google Scholar 

  110. M. Kerr, N. Chawla, Creep deformation behavior of Sn-3.5Ag solder/Cu couple at samll length scales. Acta Mater. 52(15), 4527–4535 (2004)

    Article  CAS  Google Scholar 

  111. Z.G. Chen, Y.W. Shi, Z.D. Xia, Constitutive relations on creep for SnAgCuRE lead-free solder joints. J. Electron. Mater. 33(9), 964–971 (2004)

    Article  CAS  Google Scholar 

  112. H.L. Reynolds, S.H. Kang, J.W. Morris, The creep behavior of In-Ag eutectic solder joints. J. Electron. Mater. 28(1), 69–75 (1999)

    Article  CAS  Google Scholar 

  113. S.S. Manson, M.H. Hirshberg, in Fatigue, an interdisciplinary approach. Proceedings of 10th Sagamore Army Materials Research Conference, pp. 133–178 (1964)

  114. L.F. Coffin, A note on low cycle fatigue laws. J. Mater. 6(2), 388–402 (1971)

    Google Scholar 

  115. D. Sornette, T. Magnin, Y. Brechet, The physical origin of the Coffin-Manson law in low-cycle fatigue. Europhys. Lett. 20(5), 433–438 (1992)

    Article  CAS  Google Scholar 

  116. S.W. Nam, Y.C. Yoon, B.G. Choi, J.M. Lee, J.W. Hong, The normalized Coffin-Manson plot in terms of a new damage function based on grain boundary cavitation under creep-fatigue condition. Metallurg. Mater. Trans. A 27(5), 1273–1281 (1996)

    Article  Google Scholar 

  117. J.H.L. Pang, B.S. Xiong, T.H. Low, Low Cycle fatigue models for lead-free solders. Thin Solid Films 462–463, 408–412 (2004)

    Article  CAS  Google Scholar 

  118. S. Chen, P. Sun, X.C. Wei, Z.N. Cheng, F. Liu, Coffin-Manson equation of Sn-4.0Ag-0.5Cu solder joint. Solder. Surface Mount Technol. 21(2), 48–54 (2009)

    Article  CAS  Google Scholar 

  119. P. Sun, C. Andersson, X.C. Wei, Z.N. Cheng, D.K. Shanguan, J. Liu, Coffin-Manson constant determination for a Sn-8Zn-3Bi lead-free solder joint. Solder. Surface Mount Technol. 18(2), 4–11 (2006)

    Article  CAS  Google Scholar 

  120. J.H.L. Pang, Low cycle fatigue study of lead free 99.3Sn-0.7Cu solder alloy. Int. J. Fatigue 26(8), 865–872 (2004)

    Article  CAS  Google Scholar 

  121. X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy. Int. J. Fatigue 22(3), 217–228 (2000)

    Article  CAS  Google Scholar 

  122. X. Chen, J. Song, K.S. Kin, Low cycle fatigue life prediction of 63Sn-37Pb solder under proportional and non-proportional loading. Int. J. Fatigue 28(7), 757–766 (2006)

    Article  CAS  Google Scholar 

  123. Y. Zhou, M.A. Bassyiouni, A. Dasgupta, Vibration durability assessment of Sn3.0Ag0.5Cu and Sn37Pb solders under harmonic excitation. J. Electron. Packag. 131(1), 011016 (2009)

    Article  CAS  Google Scholar 

  124. G. Cuddalorepatta, A. Dasgupta, in Cyclic mechanical durability of Sn3.0Ag0.5Cu Pb-free solder alloy. Proceeding of ASME International Mechanical Engineering Congress and RD&D Expo, pp. 5–11 (2005)

  125. P. Haswell, A. Dasgupta, in Durability properties characterization of Sn36Pb2Ag solder alloy. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 181–187 (2000)

  126. W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages. Microelectron. Reliab. 40(2), 231–244 (2000)

    Article  Google Scholar 

  127. O. Salmela, K. Andersson, A. Perttula, J. Särkkä, M. Tammenmaa, Modified Engelmaier’s model taking account of different stress levels. Microelectron. Reliab. 48(5), 773–780 (2008)

    Article  Google Scholar 

  128. L. Zhang, S.B. Xue, F.Y. Lu, Z.J. Han, S.L. Yu, Z.M. Lai, Fatigue life prediction for fine pitch device solder joints based on creep model. J. Mech. Eng. 45(9), 279–284 (2009)

    Article  Google Scholar 

  129. N. Paydar, Y. Tong, H.U. Akay, A finite element study of factors affecting fatigue life of solder joints. J. Electron. Packag. 116(4), 265–273 (1994)

    Article  Google Scholar 

  130. W. Engelmaier, Fatigue life of leadless chip carrier solder joints during power cycling. IEEE Trans. Components Hybrids Manufact. Technol. 6(3), 232–237 (1983)

    Article  Google Scholar 

  131. Y.E. Shin, J.H. Lee, Y.W. Koh, C.W. Lee, A study on μBGA solder joints reliability using lead-free solder materials. KSME Int. J. 16(7), 919–926 (2002)

    Google Scholar 

  132. C. Tong, S.K. Zeng, Y.X. Chen, Finite element analysis simulations of life prediction for PBGA solder joints under thermal cycling. Trans. China Weld. Inst. 28(10), 89–92 (2007)

    CAS  Google Scholar 

  133. X.S. Ma, J.J. Chen, Affects of low thermal expansion coefficient underfill on reliability of flip chip solder joint. Mach. Des. Res. 21(3), 68–70 (2005)

    CAS  Google Scholar 

  134. S.B. Park, I.Z. Ahmed, Shorter field life in power cycling for organic packages. J. Electron. Packag. 129(1), 28–34 (2007)

    Article  Google Scholar 

  135. S. Chen, T. Lee, J. Lee, N.F. Feng, in Solder joint thermal fatigue analysis of 48-FCBGA. 7th International Conference on Electronics Packaging Technology (2006)

  136. A. Syed, in Updated life prediction models for solder joints with removal of modeling assumptions and effect of constitutive equations. 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2006)

  137. X.Y. Li, Z.S. Wang, Thermo-fatigue life evaluation of SnAgCu solder joints in flip chip assemblies. J. Mater. Process. Technol. 183(1), 6–12 (2007)

    Article  CAS  Google Scholar 

  138. S. Wiese, A. Schubert, H. Walter, R. Dudek, E. Feustel Meusel, B. Michel, in Constitutive behaviour of lead-free solders vs. lead-containing solders -experiments on bulk specimens and flip-chip joints. Electronic Components and Technology Conference (2001)

  139. S. Wiese, K.J. Wolter, Creep of thermally aged SnAgCu-solder joints. Microelectron. Reliab. 47(2–3), 223–232 (2007)

    CAS  Google Scholar 

  140. A. Syed, in Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints. 54th Electronic Components and Technology Conference, Las Vegas, NV, pp. 737–746 (2004)

  141. K. Andersson, O. Salmela, A. Perttula, J. Särkkä, M. Tammenmaa, in Measurement of acceleration factor for lead-free solder (SnAg3.8Cu0.7) in thermal cycling test of BGA components and calibration of lead-free solder joint model for life prediction by finite element analyses. 6th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (2005)

  142. M.W. Brown, K.J. Miller, A theory for fatigue failure under multi-axial stress-strain conditions. Proc. Inst. Mech. Eng. 187(65), 745–755 (1973)

    Google Scholar 

  143. H. Gao, X. Chen, Effect of axial ratcheting deformation on torsional low cycle fatigue life of lead-free solder Sn-3.5Ag. Int. J. Fatigue 31(2), 276–283 (2009)

    Article  CAS  Google Scholar 

  144. D.M. Pierce, S.D. Sheppard, P.T. Vianco, A general methodology to predict fatigue life in lead-free solder alloy interconnects. J. Electron. Packag. 131(1), 011008 (2009)

    Article  CAS  Google Scholar 

  145. M. Nozaki, M. Sakane, Y. Tsukada, H. Nishimura, Creep-fatigue life evolution for Sn-3.5Ag solder. J. Eng. Mater. Technol. 128(2), 142–150 (2006)

    Article  CAS  Google Scholar 

  146. A. Perkins, S.K. Sitaraman, Universal fatigue life prediction equation for ceramic ball grid array (CBGA) packages. Microelectron. Reliab. 47(12), 2260–2274 (2007)

    Article  Google Scholar 

  147. J.H. Lau, S.H. Pan, C. Chang, A new thermal-fatigue life prediction model for wafer level chip scale (WLCSP) solder joints. J. Electron. Packag. 124(3), 212–220 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was carried out with the supported by the Jiangsu University of Science and Technology: Provincial Key Lab of Advanced Welding Technology Foundation (JSAWS-11-03) and the Xuzhou Normal University Foundation (11XLR16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Han, Jg., He, Cw. et al. Reliability behavior of lead-free solder joints in electronic components. J Mater Sci: Mater Electron 24, 172–190 (2013). https://doi.org/10.1007/s10854-012-0720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0720-y

Keywords

Navigation