Skip to main content
Log in

A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Processes for developing layers onto a substrate as the active component of metal oxide gas sensors are presented and other promising alternatives as thermal spraying are also proposed. In order to understand the electrochemical mechanisms involved, the relationship between surface reactions and the electrical signal is presented as determined by the influence of three main factors: the receptor function, the transducer function and the approachability. Distinct aspects for each key-step are discussed with the aim of achieving a better comprehension of the overall system. Performances of the most operated metal oxides and target-gases in distinct application markets are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Nakahara, in Proceedings of 38th Chemistry Sensors Symposium (2004)

  2. H. Akimoto, Science 5, 302 (2003)

    Google Scholar 

  3. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF. Accessed 12 Feb 2012

  4. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 5 March 2012

  5. T. Hirai, S.I. Hirano, Y. Takeda. The basic science division. Ceram. Soc. Jpn. 145, 145 (1996)

    Google Scholar 

  6. A. Bielanski, J. Deren, J. Haber, Electr. Nature 179, 668–669 (1957)

    Google Scholar 

  7. T. Seiyama, A. Kato, K. Fujiishi, Ma. Nagatani, Anal. Chem. 34, 11 (1962)

    Article  Google Scholar 

  8. S. Sakai. Patent number: 4535315 (1985)

  9. S. Yagawara, W. Ohta, Patent number: 5250170 (1993)

  10. M.J. Donelon, P. Kikuchi, M.E. Nottingham, Patent number: 6585872 B2 (2003)

  11. http://www.ipm.fraunhofer.de/fhg/ipm_en/solutions_services/processmonitoring/sensors/index.jsp. Accessed 15 Feb 2012

  12. http://www.fisinc.co.jp./en/products/basic.html. Accessed 21 Feb 2012

  13. http://www.figarosensor.com/products/common(1104).pdf. Accessed 21 Feb 2012

  14. N. Yamazoe, Sens. Actuat. B 108, 2–14 (2005)

    Google Scholar 

  15. N. Barsan, U. Weimar, Sens. Actuat. B 121, 18–35 (2007)

    Google Scholar 

  16. C.A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sens. Actuat. 32, 61–69 (1996)

    Google Scholar 

  17. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuat. B 68, 189–196 (2000)

    Google Scholar 

  18. Comini, G. Faglia, G. Sberveglieri. Solid State Gas Sensing (Ed. Springer, 2009). ISBN: 978-0-387-09664-3

  19. A.C. Pierre, Introduction to SolGel Processing, (Kluwer, Massachussets, 1998) ISBN-10: 0792381211

  20. R. Rella, A. Serra, P. Siciliano, L. Vasanelli, A. Licciulli, A. Quirini, Sens. Actuat. B 44, 462–467 (1997)

    Google Scholar 

  21. L. Francioso, M. Russo, A.M. Taurino, P. Siciliano, Sens. Actuat. B 119, 159–166 (2006)

    Google Scholar 

  22. H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park, G.P. Choi, Sens. Actuat. B 96, 717–722 (2003)

    Google Scholar 

  23. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Mater. Lett. 64, 1147–1149 (2010)

    Google Scholar 

  24. V.V. Petrov, T.N. Nazarova, A.N. Korolev, N.F. Kopilova, Sens. Actuat. B 133, 291–295 (2008)

    Google Scholar 

  25. M.C. Carotta, M. Ferroni, S. Gherardi, V. Guidi, C. Malagù, G. Martinelli, M. Sacerdoti, M.L. Di Vona, S. Licoccia, E. Traversa, J. Eur. Ceram. Soc. 24, 1409–1413 (2004)

    Google Scholar 

  26. F. Morazzoni, C. Canevali, N. Chiodini, C. Mari, R. Ruffo, R. Scotti, L. Armelao, E. Tondello, L.E. Depero, E. Bontempi, Chem. Mat 13, 4355–4361 (2001)

    Google Scholar 

  27. J. Shieh, H.M. Feng, M.H. Hon, H.Y. Juang, Sens. Actuat. B 86, 75–80 (2002)

    Google Scholar 

  28. L.L. Hench, J.K. West, Chem. Rev. 90, 33–72 (1990)

    Google Scholar 

  29. E. Traversa, M.L. Di Vona, S. Licoccia, M. Sacherdoti, M.C. Carotta, L. Crema, G. Martinelli, J. Sol. Gel Sci. Technol. 22, 167–179 (2001)

    Google Scholar 

  30. A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, W. Göpel, Sens. Actuat. B 70, 87–100 (2000)

    Google Scholar 

  31. R. Capan, N.B. Chaure, A.K. Hassan, A.K. Ray, Semicond. Sci. Technol. 19, 198–202 (2004)

    Google Scholar 

  32. L.E. Scriven, Better Ceram. Chem. III, 121 (2008)

    Google Scholar 

  33. K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials, (William Andrew Inc. Norwich, NY, 2005). ISBN-10: 0815514832

  34. I. Simon, N. Bârsan, M. Bauer, U. Weimar, Sens. Actuat. B 73, 1–26 (2001)

    Google Scholar 

  35. S. Sampath, J. Therm. Spray Technol. 19, 5 (2010)

    Article  Google Scholar 

  36. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd edn. (Wiley, Chichester, 2008). ISBN: 978-0-471-49049-4

  37. V.V. Sobolev, J.M. Guilemany, J. Nutting, S. Joshi, High Velocity Oxy-fuel spraying: Theory, StructureProperty Relationships and Applications, (Maney Ed. London, 2004). ISBN 1902653726

  38. A. Sunano, K. Asahi, K. Toshio, Patent number: 4713646 (1985)

  39. M. Gardon, J.M. Guilemany, Intern (Therm. Spray Conf. Proc. Houston, USA, 2012)

    Google Scholar 

  40. J.-O. Kliemann, H. Gutzmann, F. Gärtner, H. Hübner, C. Borchers, T. Klassen, J. Therm. Spray Technol. 20, 1–2 (2010)

    Google Scholar 

  41. G.J. Yang, C.J. Li, F. Han, W.Y. Li, A. Ohmori, Appl. Surf. Sci. 254, 3979–3982 (2008)

    Google Scholar 

  42. M. Yamada, H. Isago, K. Shima, H. Nakano, M. Fukumoto, Intern (Therm. Spray Conf. Proc, Singapore, 2010)

    Google Scholar 

  43. J.E. Lennard-Jones, Trans. Faraday Soc. 28, 333–359 (1932)

    Google Scholar 

  44. M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices, (Academic Press Inc. London, 1989). ISBN-10: 0124649653

  45. C.Y. Liu, C.F. Chen, J.P. Leu, J. Electrochem. Soc. 156, 16–19 (2009)

    Google Scholar 

  46. P.K. Dutta, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, S. Akbar, J. Phys. Chem. B 103, 4412–4422 (1999)

    Google Scholar 

  47. R. Ramamoorthy, P.K. Dutta, J. Mat. Sci. 38, 4271–4282 (2003)

    Google Scholar 

  48. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, N. Yamazoe, J. Mol. Catal. A: Chem. 155, 193–200 (2000)

    Google Scholar 

  49. B.B. Rao, Mat. Chem. Phys. 64, 62–65 (2002)

    Google Scholar 

  50. M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, E. Comini, Sens. Actuat. B 118, 1–2 (2006)

    Article  Google Scholar 

  51. U. Diebold, Surf. Sci. Rep. 48, 53–229 (2003)

    Google Scholar 

  52. P.W. Tasker, Sol. State Phys. 22, 4977–4984 (1979)

    Google Scholar 

  53. M. Batzill, U. Diebold, Prog. Surf. Sci. 79 (2005)

  54. N. Bârsan, U. Weimar, J. Phys. Condens. Matter 15, R813–R819 (2003)

  55. O.K. Varghese, C.A. Grimes, J. Nanosci. Nanotechnol. 3, 4 (2003)

    Article  Google Scholar 

  56. E. Comini, Analytica Chimica Acta 568, 28–40 (2006)

    Google Scholar 

  57. W. Göpel, K.D. Schierbaum, Sens. Actuat. B 26(1–3), 26–27 (1995)

    Google Scholar 

  58. N. Barsan, U. Weimar, J. Electroceram. 7, 143–167 (2001)

    Google Scholar 

  59. J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, J. Electrochem. Soc. 141, 8 (1994)

    Article  Google Scholar 

  60. K.D. Schierbaum, U. Weimar, W. Göpel, Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens. Actuat. B: Chem. 3, 205–214 (1991)

    Article  Google Scholar 

  61. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuat. B 3, 2 (1991)

    Article  Google Scholar 

  62. A. Rothschild, Y. Komem, J. Appl. Phys. 95, 11 (2004)

    Article  Google Scholar 

  63. T. Becker, S. Ahlers, C. Bosch-v.Braunmühl, G. Müller, O. Kiesewetter, Sens. Actuat. B 77, 55–61 (2001)

    Google Scholar 

  64. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, Sens. Actuat. B 84, 258–264 (2002)

    Google Scholar 

  65. M. Tiemann, Chem. Eur. J. 13, 30 (2007)

    Article  Google Scholar 

  66. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicce, A.M. Taurino, J. Optoelectr, Adv. Mat. 5, 5 (2003)

    Google Scholar 

  67. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuat. B 160, 1 (2011)

    Article  Google Scholar 

  68. C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sens. Actuat. B 144, 280–288 (2010)

    Google Scholar 

  69. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, Thin Solid Films 517, 2069–2072 (2009)

    Google Scholar 

  70. J.R. Setter, J. Li, Chem. Rev. 108, 352–366 (2008)

    Google Scholar 

  71. I.A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Appl. Surf. Sci. 253, 8607–8614 (2007)

    Google Scholar 

  72. L. Francioso, D.S. Presicce, M. Epifani, P. Siciliano, A. Ficarella, Sens. Actuat. B 107, 563–571 (2005)

    Google Scholar 

  73. M.C. Carotta, S. Gherardi, C. Malagù, M. Nagliati, B. Vendemiati, G. Martinelli, M. Sacerdoti, I.G. Lesci, Thin Solid Films 515, 23 (2007)

    Article  Google Scholar 

  74. A. Chena, S. Baia, B. Shia, Z. Liua, D. Lia, C.C. Liu, Sens. Actuat. B 135, 1 (2008)

    Article  Google Scholar 

  75. N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Thin Solid Films 325, 254–258 (1998)

    Google Scholar 

  76. W.H. Tao, C.H. Tsai, Sens. Actuat. B 81, 2–3 (2002)

    Article  Google Scholar 

  77. M.V. Vaishampayan, R.G. Deshmukh, P. Walke, I.S. Mulla, Mat. Chem. Phys. 109, 2–3 (2008)

    Article  Google Scholar 

  78. S.V. Manoramaa, C.V. Gopal Reddya, V.J. Rao, Nanostruct. Mater 11, 5 (1999)

    Article  Google Scholar 

  79. G.N. Chaudhari, D.R. Bambole, A.B. Bodade, P.R. Padole, J. Mat. Sci. 41, 15 (2005)

    Article  Google Scholar 

  80. B. Karunagarana, P. Uthirakumara, S.J. Chunga, S. Velumanib, E.-K. Suh, Mater. Charact. 58, 8–9 (2007)

    Article  Google Scholar 

  81. M. Sánchez, M.E. Rincón, Sens. Actuat. B 140, 17–23 (2009)

    Google Scholar 

  82. D.V. Dao, K. Shibuya, T. Thanh Bui, S. Sugiyama, Proc. Eng. 25, 1149–1152 (2011)

    Google Scholar 

  83. Y. Shimizu, N. Matsunaga, T. Hyodo, M. Egashira, Sens. Actuat. B 77, 1–2 (2001)

    Article  CAS  Google Scholar 

  84. T. Zhong, B. Quan, X. Liang, F. Liu, B. Wang, Mater. Sci. Eng. B 151, 2 (2008)

    Article  Google Scholar 

  85. X. Liang, T. Zhong, B. Quan, B. Wang, H. Guan, Sens. Actuat. B 134, 1 (2008)

    Article  Google Scholar 

  86. P. Hidalgo, R.H.R. Castro, A.C.V. Coelho, D. Gouveâ, Chem. Mater 17, 16 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Generalitat de Catalunya for the financial support for this research project 2009 SGR 00390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gardon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardon, M., Guilemany, J.M. A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J Mater Sci: Mater Electron 24, 1410–1421 (2013). https://doi.org/10.1007/s10854-012-0974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0974-4

Keywords

Navigation