Skip to main content
Log in

Effect of borosilicate glasses on the microwave dielectric properties of ZnO–Nb2O5–Ta2O5 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − y)[0.5ZnNb2O6–0.5Zn3Nb2O8]–yZnTa2O6 with y = 0.91 (ZNT) ceramic have been prepared by conventional solid state ceramic route. The effect of glass additives on the microstructure, densification, and microwave dielectric properties of the ZNT ceramic for low temperature co-fired ceramic applications was investigated. Different weight percentages of quenched glass such as ZnO–B2O3–SiO2, BaO–B2O3–SiO2, LiO–B2O3–SiO2 and MgO–B2O3–SiO2 were added to ZNT powder. The crystal structure of the ceramic–glass composites was studied by X-ray diffraction and microstructure by scanning electron microscopy. The microwave dielectric properties such as relative permittivity (εr), quality factor (Quxf) and co-efficient of temperature variation of resonant frequency (τf) of the ceramics have been measured in the frequency range 4–6 GHz. The 5 wt% ZnO–B2O3–SiO2 added ZNT ceramic sintered at 900 °C showed: εr = 28.1, Quxf = 32820 GHz (at 4.92 GHz), and τf = −7.7 ppm/oC respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Kajfez, P. Guillon, Dielectric resonators (Artech House, Marsseuchsettus, 1983)

    Google Scholar 

  2. M.T. Sebastian, Dielectric materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008)

    Google Scholar 

  3. H. Jantunen H, A novel low temperature co-firing ceramic (LTCC) material for telecommunication devices. PhD. Thesis, University of Oulu, Finland, (2001)

  4. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Article  CAS  Google Scholar 

  5. P.S. Anjana, M.T. Sebastian, J. Am. Ceram. Soc. 92, 96 (2009)

    Article  CAS  Google Scholar 

  6. R.R. Tummala Rao, J. Am. Ceram. Soc. 74, 895 (1991)

    Article  Google Scholar 

  7. R.C. Pullar, J. Am. Ceram. Soc. 92, 563 (2009)

    Article  CAS  Google Scholar 

  8. Y.-C. Liou, H.-M. Chen, W.-C. Tsai, Ceram. Int. 35, 2135 (2009)

    Article  CAS  Google Scholar 

  9. M.-C. Wu, K.-T. Huang, W.-F. Su, Mater. Chem. Phys. 98, 406 (2006)

    Article  CAS  Google Scholar 

  10. S.P. Wu, N. Ji, J.H. Luo, X.H. Ding, Mat. Chem. Phy. 117, 307 (2009)

    Article  CAS  Google Scholar 

  11. S.-H. Wee, D.-W. Kim, S.-I. Yoo, K.-S. Hong, Jpn. J. Appl. Phys. 43, 3511 (2004)

    Article  CAS  Google Scholar 

  12. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vanek, P. Kuzel, I.N. Jawahar, P. Mohanan, M.T. Sebastian, J. Appl. Phys. 89, 3900 (1975)

    Article  Google Scholar 

  13. P.S. Anjana, I.N. Jawahar, M.T. Sebastian, Mat. Sci. Mater. Electron 20, 587 (2009)

    Article  CAS  Google Scholar 

  14. T. Takada, S.F. Wang, S. Yoshikawa, S.T. Tang, R.E. Newnham, J. Am. Ceram. Soc. 77, 1909 (1994)

    Article  CAS  Google Scholar 

  15. T. Takada, S.F. Wang, S. Yoshikawa, S.T. Tang, R.E. Newnham, J. Am. Ceram. Soc. 77, 2485 (1994)

    Article  CAS  Google Scholar 

  16. H. Kagata, T. Inoue, J. Kato, Kameyama I (1992) low fired bismuth based dielectric ceramics for microwave use. Jpn. J. Appl. Phys. 31, 3152–3155 (1992)

    Article  CAS  Google Scholar 

  17. H.T. Kim, S.H. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3043 (1999)

    Article  CAS  Google Scholar 

  18. V. Tolmer, G. Desgardin, J. Am. Ceram. Soc. 80, 1981 (1997)

    Article  CAS  Google Scholar 

  19. T. Takaneka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  Google Scholar 

  20. S. Knickerbocker, A.H. Kumar, L.W. Herron, Am. Ceram. Soc. Bull. 72, 90 (1993)

    CAS  Google Scholar 

  21. J.-M. Wu, H.-L. Huang, J. Non-Cryst. Sol. 260, 16 (1999)

    Article  Google Scholar 

  22. L. Navias, R.L. Green, J. Am. Ceram. Soc. 29, 267 (1946)

    Article  CAS  Google Scholar 

  23. S.N. Samia, S.M. Salama, H. Salman Darwish, Ceram. Int. 21, 159 (1995)

    Article  Google Scholar 

  24. J. Krupka, K. Derzakowsky, B. Riddle, J.B. Jarvis, Meas. Sci. Technol. 9, 1751 (1998)

    Article  CAS  Google Scholar 

  25. S. J. Penn, Mc N. Alford, High relative permittivity, low loss dielectric resonator materials. EPSRC final report, EEIE, South Bank University, London, (2000)

  26. Y. Imanaka, Multilayers Low Temperature Cofired Ceramics (LTCC) Technology (Springer, Berlin, 2005)

    Google Scholar 

  27. J. Daniel Bryan, D.R. Gamelin, Progr. Inorg. Chem. 54, 47 (2005)

    Article  Google Scholar 

  28. Y.J. Seo, D.H. Shin, Y.S. Cho, J. Am. Ceram. Soc. 89, 2352 (2006)

    CAS  Google Scholar 

  29. M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, Mc N. Alford, J. Eur. Ceram. Soc. 26, 2777 (2006)

    Article  CAS  Google Scholar 

  30. J.B. Lim, J.O. Son, S. Nahm, W.S. Lee, M.J. Yoo, N.G. Gang, H.J. Lee, Y.S. Kim, Jpn. J. Appl. Phys. 43, 5388 (2004)

    Article  CAS  Google Scholar 

  31. S.-Y. Chen, Y.-J. Lin, Jpn. J. Appl.Phys 40, 3305 (2001)

    Article  CAS  Google Scholar 

  32. K.P. Surendran, P. Mohanan, M.T. Sebastian, J. Solid State Chem. 177, 4031 (2004)

    Article  CAS  Google Scholar 

  33. P. Liu, E.S. Kim, K.S. Yoon, Jpn. J. Appl. Phys. 40, 5769 (2001)

    Article  CAS  Google Scholar 

  34. D.L. Corker, R.W. Whatmore, E. Ringgaard, W.W. Wolny, J. Eur. Ceram. Soc. 20, 2039 (2000)

    Article  CAS  Google Scholar 

  35. P.S. Anjana, Tony Joseph, M.T. Sebastian, Ceram. Int. 36, 1535 (2010)

    Article  CAS  Google Scholar 

  36. H. Park, Y.-J. Choi, J.-H. Park, Mater. Chem. Phys. 88, 308 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University Grants Commission, New Delhi for the financial assistance for this work. The authors would like to thank Dr. M. T. Sebastian, Deputy Director, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum for the dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Anjana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjana, P.S., Gopakumar, N. & Sajan, S.J. Effect of borosilicate glasses on the microwave dielectric properties of ZnO–Nb2O5–Ta2O5 system. J Mater Sci: Mater Electron 24, 2035–2042 (2013). https://doi.org/10.1007/s10854-012-1053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-1053-6

Keywords

Navigation