Skip to main content
Log in

Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optical properties of pure polyvinyl alcohol (PVA) and PVA based nanocomposite films have been investigated. The nano-composite samples were prepared by the well known solution cast method. The experimental results shows that the absorption and absorption coefficient parameters are greatly affected by variation of copper oxide (CuO) nanoparticles concentration. The absorption versus wavelength for the doped samples is exponential while the absorbance of pure PVA is sharply varied with wavelength. An obvious surface plasmonic resonance peaks for the nano-composite samples were appeared. The absorption edge was greatly shifted to lower energy for the PVA doped samples. It was observed that optical band gap of pure PVA is significantly reduced upon the addition of CuO nanoparticles. The increase of refractive index with increasing CuO concentration is an evidence for the formation of new energy states and thus decreasing the energy band gap of PVA. The increase of optical dielectric constant was observed upon the addition of CuO nanoparticles. The optical dielectric loss peaks are shifted to higher wavelength with increasing the CuO concentration. The optical conductivity is increased upon the addition of CuO nanoparticles. The dispersion region in the refractive index spectra are well obeyed the single oscillator of the Wemple–Didomenico model for all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O6+ ion beam-irradiated polymers. Int. J. Polym. Anal. Charact. 19, 204–211 (2014)

    Article  Google Scholar 

  2. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Exp. Polym. Lett. 2, 630–638 (2008)

    Article  Google Scholar 

  3. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran. Polym. J. 22, 767–774 (2013)

    Article  Google Scholar 

  4. P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, A.K. Vishwanath, B.K. Das, C.V.V. Satyanarayana, PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater. Chem. Phys. 92, 229–233 (2005)

    Article  Google Scholar 

  5. N. Singh, P.K. Khanna, In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater. Chem. Phys. 104, 367–372 (2007)

    Article  Google Scholar 

  6. S.A. Zavyalov, A.N. Pivkina, J. Schoonman, Formation and characterization of metal-polymer nanostructured composites. Solid State Ion. 147, 415–419 (2002)

    Article  Google Scholar 

  7. I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper, Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19, 4831–4835 (2003)

    Article  Google Scholar 

  8. J. Lee, D. Bhattacharyya, A.J. Easteal, J.B. Metson, Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Curr. Appl. Phys. 8, 42–47 (2008)

    Article  Google Scholar 

  9. D.M. Fernandes, J.L. Andrade, M.K. Lima, M.F. Silva, L.H.C. Andrade, S.M. Lima, A.A.W. Hechenleitner, E.A.G. Pineda, Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films. Polym. Degrad. Stab. 98, 1862–1868 (2013)

    Article  Google Scholar 

  10. C.V.S. Rao, M. Ravi, V. Raja, P.B. Bhargav, A.K. Sharma, V.V.R.N. Rao, Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran. Polym. J. 21, 531–536 (2012)

    Article  Google Scholar 

  11. S.B. Aziz, Li+ ion conduction mechanism in poly (e-caprolactone)-based polymer electrolyte. Iran. Polym. J. 22, 877–883 (2013)

    Article  Google Scholar 

  12. A.N. Ananth, S. Umapathy, J. Sophia, T. Mathavan, D. Mangalaraj, On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci. 1, 87–96 (2011)

    Article  Google Scholar 

  13. M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA. J. Nanomater. 2013, 1–10 (2013)

    Article  Google Scholar 

  14. S.H. Deshmukh, D.K. Burghate, S.N. Shilaskar, G.N. Chaudhari, P.T. Deshmukh, Optical properties of polyaniline doped PVC–PMMA thin films. Indian J. Pure Appl. Phys. 46, 344–348 (2008)

    Google Scholar 

  15. R. Seoudi, A.M.A. Nada, Molecular structure and dielectric properties studies of chitin and its treated by acid, base and hypochlorite. Carbohydr. Polym. 68, 728–733 (2007)

    Article  Google Scholar 

  16. J. Wilson, G. Ravi, M.A. Kulandainathan, Electrochemical studies on inert filler incorporated poly(vinylidene fluoride–hexafluoropropylene) (PVDF–HFP) composite electrolytes. Polimeros: Ciencia e Tecnologia 16, 88–93 (2006)

    Google Scholar 

  17. N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, Effect of Li2O on structure and optical properties of lithium bismosilicate glasses. J. Alloys Compd. 480, 516–520 (2009)

    Article  Google Scholar 

  18. J. Al-Osaimi, N. Al-Hosiny, S. Abdallah, A. Badawi, Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran. Polym. J. 23, 437–443 (2014)

    Article  Google Scholar 

  19. G. Rajasudha, L.M. Jayan, D.D. Lakshmi, P. Thangadurai, N. Boukos, V. Narayanan, A. Stephen, Polyindole–CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries. Polym. Bull. 68, 181–196 (2012)

    Article  Google Scholar 

  20. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan–silver triflate electrolyte membrane. Exp. Polym. Lett. 4, 300–310 (2010)

    Article  Google Scholar 

  21. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Phys. B 405, 4429–4433 (2010)

    Article  Google Scholar 

  22. O.G. Abdullah, B.K. Aziz, D.M. Salh, Structural and optical properties of PVA:Na2S2O3 polymer electrolytes films. Indian J. Appl. Res. 3, 477–480 (2013)

    Article  Google Scholar 

  23. F.F. Muhammad, S.B. Aziz, S.A. Hussein, Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-2430-0

    Google Scholar 

  24. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Structural, electrical and optical characterization of pure and doped poly(vinyl alcohol) (PVA) polymer electrolyte films. Int. J. Polym. Mater. 56, 579–591 (2007)

    Article  Google Scholar 

  25. K. Hareesh, G. Sanjeev, A.K. Pandey, V. Rao, Characterization of UV-irradiated Lexan polycarbonate films. Iran. Polym. J. 22, 341–349 (2013)

    Article  Google Scholar 

  26. P.K. Khare, S.K. Jain, Dielectric properties of solution-grown-undoped and acrylic-acid-doped ethyl cellulose. Bull. Mater. Sci. 23, 17–21 (2000)

    Article  Google Scholar 

  27. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, P.K. Sharma, Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater. Chem. Phys. 134, 1121–1126 (2012)

    Article  Google Scholar 

  28. M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films. Phys. B 406, 1300–1307 (2011)

    Article  Google Scholar 

  29. F. Yakuphanoglu, M. Kandaz, M.N. Yarasir, F.B. Senkal, Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B 393, 235–238 (2007)

    Article  Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, vol. Ch. 15, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  31. M. Caglar, M. Zor, S. Ilican, Y. Caglar, Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22Zn0.78S thin films. Czech J. Phys. 56, 277–287 (2006)

    Article  Google Scholar 

  32. E. Hecht, Optics, vol. 3, 4th edn. (Adison Wesley, Reading, MA, 2002)

    Google Scholar 

  33. F.F. Muhammad, K. Sulaiman, Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films—Alq3 and Gaq3 as examples. Measurement 44, 1468–1474 (2011)

    Article  Google Scholar 

  34. J. Borah, S.S. Mahapatra, S. Saikia, N. Karak, Physical, thermal, dielectric and chemical properties of a hyperbranched polyether and its linear analog. Polym. Degrad. Stab. 91, 2911–2916 (2006)

    Article  Google Scholar 

  35. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constant of Cu(II) compound having 1-chloro-2, 3-o-cyclohexylidinepropane thin film. Opt. Commun. 239, 275–280 (2004)

    Article  Google Scholar 

  36. R. Das, S. Pandey, Comparison of optical properties of bulk and nano crystalline thin films of CdS using different precursors. Int. J. Mater. Sci. 1, 35–40 (2011)

    Google Scholar 

  37. Y.S. Kim, Electrical conductivity of segregated network polymer nanoposites. Ph.D. Dissertation, Texas A&M University, 2007

  38. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802–810 (2013)

    Article  Google Scholar 

  39. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  40. M.A. Mahdi, S.K.J. Al-Ani, Optical characterization of chemical bath deposition Cd1−xZnxS thin films. Int. J. Nanoelectron. Mater. 5, 11–24 (2012)

    Google Scholar 

  41. A.H. Ammar, Studies on some structural and optical properties of ZnxCd1−xTe thin films. Appl. Surf. Sci. 201, 9–19 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Higher Education and Scientific Research-Kurdistan Regional Government-Iraq, University of Sulaimani, Faculty of Science and Science Education, School of Science-Department of Physics for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Aziz, S.B., Omer, K.M. et al. Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci: Mater Electron 26, 5303–5309 (2015). https://doi.org/10.1007/s10854-015-3067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3067-3

Keywords

Navigation