Skip to main content
Log in

Plasma treated graphene oxide films: structural and electrical studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The exfoliation of oxygenated functional groups from 60 W hydrogen plasma treated graphene oxide films was investigated using X-ray diffractometric (XRD), Raman spectroscopic and atomic force microscopic techniques. The interlayer spacing of the graphene oxide sheets was found from the XRD pattern to decrease from 0.88 to 0.35 nm after plasma treatment. The reduced intensity ratio of the D and G peaks of the Raman spectra indicates a decrease in the crystallite size of the sp 2 domains due to plasma treatment. Atomic force microscope showed the continuous morphology of the plasma treated film. The electrical properties of plasma treated samples spin-coated on silicon were studied using Van Der Pauw and non contacting microwave techniques. The sheet resistivity determined from Van der Pauw measurements was \(1.62\,{\text{M}}\Omega /{\text{sq}}\), yielding the value of \(3.1\,{\text{S}}\,{\text{m}}^{ - 1}\) for the bulk conductivity. The charge mobility of \(3.8\,{\text{m}}^{2} \,{\text{V}}^{ - 1} \,{\text{s}}^{ - 1}\) has been determined from Hall measurement technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  2. T. Mori, Y. Kikuzawa, H. Takeuchi, Org. Electron. 9, 328–332 (2008)

    Article  Google Scholar 

  3. M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, IEEE Electron. Device Lett. 28, 282 (2007)

    Article  Google Scholar 

  4. J. Su, M. Cao, L. Ren, C. Hu, J. Phys. Chem. C 115, 14469 (2011)

    Article  Google Scholar 

  5. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Giem, K.S. Novoselov, Science 323, 610–613 (2009)

    Article  Google Scholar 

  6. X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8, 323–327 (2008)

    Article  Google Scholar 

  7. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.W.B. Dommett, G. Evmenenko, S.E. Wu, S.E. Chen, S.F. Chen, C.P. Liu, S.T. Nguyen, R.S. Ruoff, Nano Lett. 7, 1888 (2007)

    Article  Google Scholar 

  8. F. Scheldin, A.K. Giem, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  9. Y. Li, N. Chopra, JOM 67(1), 34–43 (2015)

    Article  Google Scholar 

  10. Y. Li, N. Chopra, JOM 67(1), 44–52 (2015)

    Article  Google Scholar 

  11. A. Dato, V. Radmilov, Z. Lee, J. Philips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    Article  Google Scholar 

  12. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706–710 (2009)

    Article  Google Scholar 

  13. M.H. Kang, W.I. Milne, M.T. Cole, IET Circ. Devices Syst. 9(1), 39 (2015)

    Article  Google Scholar 

  14. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellog, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nat. Mater. 8, 203–207 (2009)

    Article  Google Scholar 

  15. S.F. Pei, H.M. Cheng, Carbon 50(9), 3210 (2012)

    Article  Google Scholar 

  16. S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. B 16, 155 (2006)

    Article  Google Scholar 

  17. D. Teweldebrhan, A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)

    Article  Google Scholar 

  18. J.L. Li, K.N. Kudin, M.J. McAllister, R.K. Prud’homme, A.I. Aksay, R. Car, Phys. Rev. Lett. 96, 176101 (2006)

    Article  Google Scholar 

  19. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7(11), 3499–3503 (2007)

    Article  Google Scholar 

  20. C. Fu, G. Zhao, H. Zhang, S. Li, Int. J. Electrochem. Sci. 8, 6269–6280 (2013)

    Google Scholar 

  21. H. Ju, S.H. Choi, S.H. Huh, J. Korean Phys. Soc. 57(6), 1649–1652 (2010)

    Google Scholar 

  22. S. Stankovich, A.D. Dikin, D.R. Piner, K.A. Kohlhass, A. Kleinhammes, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  23. X. Tong, H. Wang, G. Wang, L. Wan, Z. Ren, J. Bai, J. Solid State Chem. 184, 982 (2011)

    Article  Google Scholar 

  24. A.C. Ferrari, J. Robertson, J. Phys. Rev. B 61, 14095 (2000)

    Article  Google Scholar 

  25. L.G. Cancado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11(8), 3190 (2011)

    Article  Google Scholar 

  26. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B Adv. Funct. Solid State Mater 193, 49–60 (2015)

    Article  Google Scholar 

  27. J. van der Pauw, Philips Tech. Rev. 20(8), 220–224 (1958)

    Google Scholar 

  28. S.W. Lee, C. Mattevi, M. Chhowalla, R. Mohan Sankaran, J. Phys. Chem. Lett. 3, 772–777 (2012)

    Article  Google Scholar 

  29. G. Rietveld, C.V. Koijmans, L.C.A. Henderson, M.J. Hall, S. Harmon, P. Warnecke, B. Schumacher, IEEE Trans. Instrum. Meas. 52(2), 449 (2003)

    Article  Google Scholar 

  30. L. Hao, C. Mattevi, J. Gallop, S. Goniszewski, Y. Xiao, L. Cohen, N. Klein, Nanotechnology 23, 285706 (2012)

    Article  Google Scholar 

  31. O. Shaforost, K. Wang, S. Goniszewski, M. Adabi, Z. Guo, S. Hanham, J. Gallop, L. Hao, N. Klein, J. Appl. Phys. 117, 024501 (2015)

    Article  Google Scholar 

  32. L. Hao, J. Gallop, S. Goniszewski, O. Shaforost, N. Klein, R. Yakimova, Appl. Phys. Lett. 103, 123103 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Indrani Banerjee is grateful to Commonwealth Association, UK for funding the present research work under the fellowship placement scheme (Grant reference INCF-2014-66). Gratitude is due to Dr. Lesley Hanna of Wolfson Centre, Brunel University London for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Patel, T., Banerjee, I. et al. Plasma treated graphene oxide films: structural and electrical studies. J Mater Sci: Mater Electron 26, 4810–4815 (2015). https://doi.org/10.1007/s10854-015-3122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3122-0

Keywords

Navigation