Skip to main content
Log in

Defect induced ferromagnetism in luminescent and doped CdS quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports transition metal (TM = Ni, Mn, Fe, Co and Cr) doping of CdS nanoparticles with the generic formula Cd1-xTMxS; x = 0.04 and 0.08 synthesized by chemical co-precipitation method. Polyvinylpyrrolidone was used as surfactant to prevent agglomeration. The samples were characterized with X-ray diffraction (XRD), UV–Vis absorption spectroscopy, photoluminescence and superconducting quantum interference device (SQUID). XRD confirmed the phase purity of the doped samples. Average crystallite size calculated from Debye–Scherrer formula was 2–9 nm. The UV–Vis spectra of the samples show blue shift, revealing strong confinement effect in the nanoparticles. The band gap calculated from UV–Vis spectroscopy lies in the range of 2.81–2.89 eV. The synthesized samples show luminescent emission ranging from 450 to 600 nm in the visible region of the electromagnetic spectrum. SQUID studies at 300 K reveal that Cd1−xNixS and Cd1−xMnxS show paramagnetic behaviour with small nonlinearity for low magnetic field whereas room temperature ferromagnetism was observed for Cd1−xFexS, Cd1−xCoxS and Cd1−xCrxS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  Google Scholar 

  2. S. Gupta, W.E. Fenwick, A. Melton, T. Zaidi, H. Yu, V. Rengarajan, J.N. Ougazzaden, I.T. Ferguson, J. Cryst. Growth 310, 5032 (2008)

    Article  Google Scholar 

  3. Y. Li, C. Cao, Z. Chen, Chem. Phys. Lett. 517, 55 (2011)

    Article  Google Scholar 

  4. S. Sambasivam, B.C. Choi, J.G. Lin, J. Solid State Chem. 184, 199 (2011)

    Article  Google Scholar 

  5. K. Bapna, R.J. Choudhary, S.K. Pandey, D.M. Phase, S.K. Sharma, M. Knobel, Appl. Phys. Lett. 99, 112502 (2011)

    Article  Google Scholar 

  6. S.-Q. Shen, AAPPS Bull. 18, 29 (2008)

    Google Scholar 

  7. M.I. Dyakonov. arXiv:cond-mat/0401369v11-10. (2004)

  8. S.D. Sarma, J. Fabian, X. Hu, I. Zutic, Superlattices. Microstruct. 27, 289 (2000)

    Article  Google Scholar 

  9. R. Srinivasan, Spintron. Reson. 53, 53 (2005)

    Article  Google Scholar 

  10. M. Inoue, N. Adachi, I. Mogi, G. Kido, Y. Nakagawa, Y. Oka, Phys. B 184, 441 (1993)

    Article  Google Scholar 

  11. K.M. Hanif, W.R. Meulenberg, F.G. Strouse, J. Am. Chem. Soc. 124, 11495 (2002)

    Article  Google Scholar 

  12. Y. Oka, T. Ohnishi, H. Sato, I. Souma, J. Cryst. Growth 117, 840 (1992)

    Article  Google Scholar 

  13. E. Bacaksiz, M. Tomakin, M. Altunbas, M. Parlak, T. Colakoglu, Phys. B 403, 3740 (2008)

    Article  Google Scholar 

  14. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  15. L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Korzhavyi, I. Turek, Phys. Rev. Lett. 93, 137202 (2002)

    Article  Google Scholar 

  16. A. Kaminski, S.D. Sarma, Phys. Rev. Lett. 88, 247202 (2002)

    Article  Google Scholar 

  17. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 87, 1019 (2000)

    Article  Google Scholar 

  18. J. König, H.H. Lin, A.H. MacDonald, Phys. Rev. Lett. 84, 5628 (2000)

    Article  Google Scholar 

  19. C. Timm, Phys. Rev. Lett. 96, 117201 (2001)

    Article  Google Scholar 

  20. M. Berciu, R.N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001)

    Article  Google Scholar 

  21. A. Kaminski, V.M. Galitski, S.D. Sarma, Phys. Rev. B 70, 115216 (2004)

    Article  Google Scholar 

  22. D.J. Priour, S. Das Sarma, Phy. Rev. B 73, 165203 (2006)

    Article  Google Scholar 

  23. P. Kacman, Semicond. Sci. Technol. 16, 25 (2001)

    Article  Google Scholar 

  24. B.E. Larson, K.C. Hass, H. Ehrenreich, A.E. Carlsson, Phys. Rev. B 37, 4137 (1988)

    Article  Google Scholar 

  25. J.K. Furdyna, J. Appl. Phys. 64, 29 (1988)

    Article  Google Scholar 

  26. I. Sarkar, M.K. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, S. Takeyama, H. Mino, F. Komori, Phy. Rev. B 75, 224409 (2007)

    Article  Google Scholar 

  27. G. Murali, D.A. Reddy, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, R. Venugopal, Phys. B 407, 2084 (2012)

    Article  Google Scholar 

  28. S. Kumar, S. Kumar, S. Jain, N.K. Verma, Appl. Nanosci. 2, 127 (2012)

    Article  Google Scholar 

  29. T. Hu, M. Zhang, S. Wang, Q. Shi, G. Cui, Shishuai, CrystEngComm 13, 5646 (2011)

    Article  Google Scholar 

  30. P. Srivastava, P. Kumar, K. Singh, J. Nanopart. Res. 13, 5077 (2011)

    Article  Google Scholar 

  31. P. Venkatesu, K. Ravichandran, Adv. Mat. Lett. 4, 202 (2013)

    Google Scholar 

  32. K.S. Kumar, A. Divya, P. Sreedhara Reddy, S. Uthanna, E. Elangovan, ACTA Phys. Pol. A 120, 52 (2011)

    Google Scholar 

  33. A. Mercy, K.S. Murugesan, B.M. Boaz, A.J. Anandhi, R. Kanagadurai, J. Alloys compd. 554, 189 (2013)

    Article  Google Scholar 

  34. C. Wang, H.M. Wang, Z.Y. Fang, J Alloys compd. 486, 702 (2009)

    Article  Google Scholar 

  35. S.M.T. Otaqsara, M. Hassan Yousefi, A.A. Khosravi, Turk, J. Phys. 35, 341 (2011)

    Google Scholar 

  36. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, R. Balasundaraprabhu, J. Electron. Mater. 41, 665 (2012)

    Article  Google Scholar 

  37. K. Siva Kumar, A. Divya, P.S. Reddy, Appl. Surf. Sci. 257, 9515 (2011)

    Article  Google Scholar 

  38. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, N. Murugan, J. Chaudhuri, S. Parameswaran, A. Marathe, S. Agilan, R. Balasundaraprabhu, J. Mater Sci. Mater. Electron. 23, 618 (2012)

    Article  Google Scholar 

  39. A. Nag, S. Sapra, C. Nagamani, A. Sharma, N. Pradhan, S.V. Bhat, D.D. Sarma, Chem. Mater. 19, 3252 (2007)

    Article  Google Scholar 

  40. S.M. Liu, F.Q. Liu, H.Q. Guo, Z.H. Zhang, Z.G. Wang, Solid State Commun. 115, 615 (2000)

    Article  Google Scholar 

  41. S.M. Taheri, M.H. Yousefi, J. Phys. 40, 301 (2010)

    Google Scholar 

  42. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, J. Alloys Compd. 554, 357 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Council of Scientific and Industrial Research (CSIR), Government of India [Grant No. 03(1246)/12/EMR-II)], for funding this work. The authors also acknowledge STIC, Cochin for providing the XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, L.K., Inpasalini, M.S. & Mukherjee, S. Defect induced ferromagnetism in luminescent and doped CdS quantum dots. J Mater Sci: Mater Electron 26, 7621–7628 (2015). https://doi.org/10.1007/s10854-015-3399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3399-z

Keywords

Navigation