Skip to main content
Log in

A review of high-temperature electronics technology and applications

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronics that must operate at extreme temperatures present a unique set of challenges that must be carefully addressed. We review the applications that are calling for high temperature electronics, discuss some of the underlying problems with standard technology, and examine the established and emerging technologies that provide solutions to engineers who wish to design high-temperature electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Dreike, D. Fleetwood, D. King, D. Sprauer, T. Zipperian, An overview of high temperature electronic device technologies and potential applications. IEEE Trans. Compon. Packag. Manuf. Technol. 17(4), 594–609 (1993)

    Article  Google Scholar 

  2. J. Watson, G. Castro, High temperature electronics pose design and reliability challenges. Analog Dialogue 46(2), 3–9 (2012)

    Google Scholar 

  3. R. Norman, First High Temperature Electronics Product Survey 2005 SAND2006-1580 (Sandia National Labrotories, Albuqueque, 2006)

    Book  Google Scholar 

  4. A.I. Medhi, K. Brockschmidt, A Case for High Temperature Electronics for Aerospace, in International Conference on High Temperature Electronics (HiTEC), (Albuequeque, 2006)

  5. A. Behbani, B. Wood, D. Bendon, A. Berner, B. Hegwood, J. Dejager, W. Rhoden, B. Ohme, J. Sloat, C. Harmon, Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls, in 58th Internatnation Instrumentation Symposium (San Diego, 2012)

  6. K. Reinhardt, M.A. Marciniak, Wide Bandgap Power Electronics for the More Electric Aircraft, in International High Temperature Electronics Conference (HiTEC) (Albuquerque, 1996)

  7. M.A. Huque, S.K. Islam, B.J. Blalock, C. Su, R. Vijayaraghavan, L.M. Tolbert, Silicon-on-Insulator Based High Temperature Electronics for Automotive Applications, in IEEE International Symposium on Industrial Electronics (Cambridge, 2008)

  8. R. Johnson, J. Evans, P. Jacobsen, J. Thompson, M. Christopher, The changing automotive environment: high temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27(3), 164–176 (2004)

    Article  Google Scholar 

  9. S.M. Sze, K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2007)

    Google Scholar 

  10. D. Das, M. Pecht, N. Pendse, Rating and Uprating of Electronic Products (CALCE EPSC Press, University of Maryland, College Park, 2004)

    Google Scholar 

  11. Y. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)

    Article  Google Scholar 

  12. National Research Council, Materials for High Temperature Semiconductor Devices (The National Academic Press, Washington DC, 1995)

    Google Scholar 

  13. J. Goetz, Sensors that Can Take The Heat Part 1: Opening the High Temperature Toolbox. Sensors 17(6), 20–38 (2000)

    Google Scholar 

  14. J.W. Palmour, H.S. Kong, R.F. Davis, Characterization of device parameters in high-temperature metal-oxide-semiconductor field-effect transistors in B-SiC thin films. Appl. Phys. Lett. 64(4), 2168–2177 (1988)

    Google Scholar 

  15. P.G. Neudeck, D.J. Spry, L.Y. Chen, G.M. Beheim, R.S. Okojie, C.W. Chang, R.D. Meredith, T.L. Ferrier, L.J. Evans, M.J. Krasowski, N.F. Prokop, Stable electrical operation of 6H–SiC JFETs and ICs for thousands of hours at 500C. IEEE Electron Device Lett. 29(5), 456–459 (2008)

    Article  Google Scholar 

  16. P. Neudeck, R.S. Okojie, L.Y. Chen, High temperature electronics—a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002)

    Article  Google Scholar 

  17. P. McCluskey, R. Grzybowski, T. Podlesak, High Temperature Electronics (CRC Press, New York, 1997)

    Google Scholar 

  18. R. Gryzbowski, High temperature passive components for commercial and military applications, in Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, vol. 1, no. 1, pp. 699–704, 1997

  19. C. Bunel, L. Lengignon, Silicon Capacitors with Extremely High Stability and Reliability Ideal for High Temperature Applications,” in International Conference on High Temper at ure Electronics (HiTEC 2012) (Albuquerque, 2012)

  20. R. Phillips, High Temperature Ceramic Capacitors for Deep Well Applications (CARTS International, Houston, 2013)

    Google Scholar 

  21. Y. Hernik, Strength and Weaknesses of Common Resistor Types. 31 May 2010. http://www.eetimes.com/document.asp?doc_id=1256482. Accessed 1-2-2015

  22. J. Galipeau, G. Slama, Reliability Testing on a Multilayer Chip Inductor Fabricated from a Ferrite with 350C Curie Point, in International Conference on High Temperature Electronics (HiTEN) (Oxford, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Watson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, J., Castro, G. A review of high-temperature electronics technology and applications. J Mater Sci: Mater Electron 26, 9226–9235 (2015). https://doi.org/10.1007/s10854-015-3459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3459-4

Keywords

Navigation