Skip to main content
Log in

The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3 (short for BFO) thin films with different grain sizes were fabricated via sol–gel spin-coating method. The effects of grain size on leakage behavior, dielectric, ferroelectric, piezoelectric properties and domain structure of BFO thin films have been investigated systematically. The X-ray diffraction results show that BFO thin films are rhombohedral distortion perovskite structure. Compared with the films annealed at 550 °C, the grain size of BFO thin films annealed at 600 °C is larger and the roughness is less, and the crystallinity and purity are higher. The leakage current density of BFO thin films with larger grain size is much lower than that of the films with smaller grain size. It is found that the conduction behavior of BFO thin films with smaller grain size transforms from Ohmic to space-charge-limited current and Fowler–Nordheim tunneling conduction as electric field increases. But there is the only transition from Ohmic conduction to space-charge-limited conduction for the thin films with larger grain size as electric field increase. The room temperature dielectric constant and remnant polarization of BFO thin films with larger grain size are higher than that of the films with smaller grain size. The ferroelectric domain size increases with the increase of grain size so that the ferroelectric polarization in BFO thin films with larger grain size enhances. Moreover, it is found that there are negatively charged “tail to tail” domain wall in BFO thin films with smaller grain size and positively charged “head to head” domain wall in the sample with larger grain size. The majority carriers including positively charged hole or oxygen vacancy assemble on negatively charged “tail to tail” domain wall in p-type BFO thin films with smaller grain size and result in relative higher leakage current. The piezoelectric coefficient of the films with larger grain size is much higher than that of the sample with smaller grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Yang, Q. He, P. Yu, Y.H. Chu, Annu. Rev. Mater. Res. (2015). doi:10.1146/annurev-matsci-070214-020837

    Google Scholar 

  2. B. Xu, D.W. Wang, J. Íñiguez, L. Bellaiche, Adv. Funct. Mater. 25, 552–558 (2015)

    Article  Google Scholar 

  3. J.F. Scott, NPG Asia Mater. 5, e72 (2013)

    Article  Google Scholar 

  4. J. Liu, H.M. Deng, X.Z. Zhai, H.Y. Cao, P.X. Yang, J.H. Chu, J. Mater. Sci-Mater. El. (2015). doi:10.1007/s10854-015-2785-x

    Google Scholar 

  5. M.J. Chen, J.N. Ding, J.H. Qiu, N.Y. Yuan, Mater. Lett. 139, 325–328 (2015)

    Article  Google Scholar 

  6. L. Wang, Z. Wang, K.J. Jin, J.Q. Li, H.X. Yang, C. Wang, R.Q. Zhao, H.B. Lu, H.Z. Guo, G.Z. Yang, Appl. Phys. Lett. 102, 242902 (2013)

    Article  Google Scholar 

  7. T.K. Lee, K.D. Sung, T.H. Kim, J.H. Ko, J.H. Jung, J. Appl. Phys. 116, 194101 (2014)

    Article  Google Scholar 

  8. K.H. Liu, W. Cai, C.L. Fu, K. Lei, L. Xiang, X.B. Gong, J. Alloys Compd. 605, 21–28 (2014)

    Article  Google Scholar 

  9. G.G. Condorelli, M.R. Catalano, E. Smecca, R.L. Nigro, G. Malandrino, Surf. Coat. Tech. 230, 168–173 (2013)

    Article  Google Scholar 

  10. Q. Zhang, N. Valanoor, O. Standard, J. Mater. Chem. C 3, 582–595 (2015)

    Article  Google Scholar 

  11. S. Gupta, M. Tomar, V. Gupta, A.R. James, M. Pal, R.Y. Guo, A. Bhalla, J. Appl. Phys. 115, 234105 (2014)

    Article  Google Scholar 

  12. S.S. Rajput, R. Katoch, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, A. Garg, J. Alloys Compd. 621, 339–344 (2015)

    Article  Google Scholar 

  13. D.H. Kuang, P. Tang, X.D. Ding, S.H. Yang, Y.L. Zhang, J. Mater. Sci-Mater. El. (2015). doi:10.1007/s10854-015-2789-6

    Google Scholar 

  14. C.M. Raghavan, J.W. Kim, S.S. Kim, J. Am. Ceram. Soc. 97, 235–240 (2014)

    Article  Google Scholar 

  15. W. Ye, G.Q. Tan, G.H. Dong, H.J. Ren, A. Xia, Ceram. Int. 41, 4668–4674 (2015)

    Article  Google Scholar 

  16. L.V. Costa, R.C. Deus, C.R. Foschini, E. Longo, M. Cilense, A.Z. Simões, Mater. Chem. Phys. 144, 476–483 (2014)

    Article  Google Scholar 

  17. C.C. Leu, T.J. Lin, S.Y. Chen, C.T. Hu, J. Am. Ceram. Soc. (2015). doi:10.1111/jace.13377

    Google Scholar 

  18. S. Hussain, S.K. Hasanain, G.H. Jaffari, S.I. Shah, Curr. Appl. Phys. 15(3), 194–200 (2015)

    Article  Google Scholar 

  19. D. Sando, A. Barthélémy, M. Bibes, J. Phys-Condens. Matt. 26, 473201 (2014)

    Article  Google Scholar 

  20. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, ACS Appl. Mater. Inter. 3, 3261–3263 (2011)

    Article  Google Scholar 

  21. Y.H. Chu, T. Zhao, M.P. Cruz, Q. Zhan, P.L. Yang, L.W. Martin, M. Huijben, C.H. Yang, F. Zavaliche, H. Zheng, R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007)

    Article  Google Scholar 

  22. X.W. Tang, J.M. Dai, X.B. Zhu, J.C. Lin, Q. Chang, D.J. Wu, W.H. Song, Y.P. Sun, J. Am. Ceram. Soc. 95, 538–544 (2012)

    Article  Google Scholar 

  23. C.C. Lee, J.M. Wu, Appl. Surf. Sci. 253, 7069–7073 (2007)

    Article  Google Scholar 

  24. Y. Wang, Y.H. Lin, C.W. Nan, J. App. Phys. 104, 123912 (2008)

    Article  Google Scholar 

  25. F.Z. Huang, X.M. Lu, W.W. Lin, Y. Kan, J.T. Zhang, Q.D. Chen, Z. Wang, L.B. Li, J.S. Zhu, Appl. Phys. Lett. 97, 222901 (2010)

    Article  Google Scholar 

  26. J.L. Zhao, H.X. Lu, J.R. Sun, B.G. Shen, Phys. B 407, 2258–2261 (2012)

    Article  Google Scholar 

  27. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Phys. Rev. Lett. 100, 027602 (2008)

    Article  Google Scholar 

  28. X.W. Tang, X.B. Zhu, J.M. Dai, Y.P. Sun, Acta Mater. 61, 1739–1747 (2013)

    Article  Google Scholar 

  29. X.M. Chen, H. Zhang, K.B. Ruan, W.Z. Shi, J. Alloys Compd. 529, 108–112 (2012)

    Article  Google Scholar 

  30. X.W. Tang, X.B. Zhu, J.M. Dai, J. Yang, L. Chen, Y.P. Sun, J. Appl. Phys. 113, 043706 (2013)

    Article  Google Scholar 

  31. Y.J. Ren, X.H. Zhu, C.Y. Zhang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2489–2493 (2014)

    Article  Google Scholar 

  32. M. Tyagi, R. Chatterjee, P. Sharma, J. Mater. Sci-Mater. El. 26, 1987–1992 (2015)

    Article  Google Scholar 

  33. D.H. Kuang, P. Tang, S.H. Yang, Y.L. Zhang, J. Sol–Gel Sci. Technol. 73, 410–416 (2015)

    Article  Google Scholar 

  34. H.Q. Li, J.S. Liu, Q.L. Liao, W.L. Zhang, S.R. Zhang, J. Mater. Sci-Mater. El. 25, 2998–3002 (2014)

    Article  Google Scholar 

  35. A.Z. Simões, L.S. Cavalcante, F. Moura, N.C. Batista, E. Longo, J.A. Varela, Appl. Phys. A 109, 703–714 (2012)

    Article  Google Scholar 

  36. A.Z. Simões, A.H.M. Gonzalez, L.S. Cavalcante, C.S. Riccardi, E. Longo, J.A. Varela, J. Appl. Phys. 101, 074108 (2007)

    Article  Google Scholar 

  37. K.B. Yin, M. Li, Y.W. Liu, C.L. He, F. Zhuge, B. Chen, W. Lu, X.Q. Pan, R.W. Li, Appl. Phys. Lett. 97, 042101 (2010)

    Article  Google Scholar 

  38. H. Naganuma, J. Miura, S. Okamura, J. Electroceram. 22, 203–208 (2009)

    Article  Google Scholar 

  39. N. Panwar, I. Coondoo, A. Tomar, A.L. Kholkin, V.S. Puli, R.S. Katiyar, Mater. Res. Bull. 47, 4240–4245 (2012)

    Article  Google Scholar 

  40. R.K. Vasudevan, W.D. Wu, J.R. Guest, A.P. Baddorf, A.N. Morozovska, E.A. Eliseev, N. Balke, V. Nagarajan, P. Maksymovych, S.V. Kalinin, Adv. Funct. Mater. 23, 2592–2616 (2013)

    Article  Google Scholar 

  41. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, A.C.S. Appl, Mater. Inter. 3, 2504–2511 (2011)

    Article  Google Scholar 

  42. S.S. Rajput, R. Katocv, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, A. Garg, J. Alloys Compd. 621, 339–344 (2015)

    Article  Google Scholar 

  43. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  44. K.C. Kao, Dielectric phenomena in solids: With emphasis on physical concepts of electronic processes (Elsevier Academic Press, San Diego, 2004), pp. 364–376

    Google Scholar 

  45. P. Khare, A. Swarup, Engineering Physics: Fundamentals and Modern Applications, 1st edn. (Jones & Bartlett Learning, Burlington, 2004)

    Google Scholar 

  46. S. Mohanty, R.N.P. Choudhary, B.N. Parida, R. Padhee, Appl. Phy. A 116, 1833–1840 (2014)

    Article  Google Scholar 

  47. L. Jin, F. Li, S.J. Zhang, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  Google Scholar 

  48. W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, J. Alloys Compd. 480, 870–873 (2009)

    Article  Google Scholar 

  49. K.Y. Yun, M. Noda, M. Okuyama, Appl. Phys. Lett. 83, 3981–3983 (2003)

    Article  Google Scholar 

  50. I.B. Misirlioglu, M.B. Okatan, S.P. Alpay, J. Appl. Phys. 108, 034105 (2010)

    Article  Google Scholar 

  51. A.Z. Simões, M.A. Ramirez, C.R. Foschini, F. Moura, J.A. Varela, E. Longo, Ceram. Int. 38, 3841–3849 (2012)

    Article  Google Scholar 

  52. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.H. Chu, A. Rother, M.E. Hawkridge, P. Maksmovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 8, 229–234 (2009)

    Article  Google Scholar 

  53. Q.Q. Ke, A. Kumar, X.J. Lou, Y.P. Feng, K.Y. Zeng, Y.Q. Cai, J. Wang, Acta Mater. 82, 190–197 (2015)

    Article  Google Scholar 

  54. E. Miranda, D. Jiménez, A. Tsurumaki-Fukuchi, J. Blasco, H. Yamada, J. Suñé, A. Sawa, Appl. Phys. Lett. 105, 082904 (2014)

    Article  Google Scholar 

  55. Q. Xu, M. Sobhan, Q. Yang, F. Anariba, K.P. Ong, P. Wu, Dalton Trans. 43, 10787–10793 (2014)

    Article  Google Scholar 

  56. Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Appl. Phys. Lett. 92, 012097 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51102288, 51372283, 51402031, 61404018), the Research Foundation of Chongqing University of Science and Technology (CK2013B08), the Cooperative Project of Academician Workstation of Chongqing University of Science & Technology (CKYS2014Z01, CKYS2014Y04) and the Innovation Program for Students in Chongqing University of Science and Technology (2014026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Cai, W., Fu, C. et al. The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol–gel method. J Mater Sci: Mater Electron 26, 9495–9506 (2015). https://doi.org/10.1007/s10854-015-3690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3690-z

Keywords

Navigation