Skip to main content
Log in

Structure-magnetic property correlations in nickel-polymer nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy matrix nanocomposites with nickel nanoparticles of two different sizes were processed and characterized to investigate their structure-magnetic property correlations. Crystal structure, morphology, density, resistivity and magnetic properties of the nanocomposites with different filler contents were compared for different size scales. Nanocomposites with 25 nm nanoparticles showed higher coercivity, higher frequency stability and lower loss, though the permeability was suppressed. Coarser nickel particles (100 nm) showed a permeability of ~5.5 but stability only up to 200 MHz. The structure-magnetic property correlations were validated using analytical models to provide valuable design guidelines for permeability and frequency-stability in particulate nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Chakraborti, H. Sharma, P.M. Raj, R. Tummala, in ECTC 63rd IEEE, 1043–1047 (2013)

  2. S. Mathuna, T. O’Donnell, N. Wang, K. Rinne, IEEE Trans. Power Electron. 20(3), 585–592 (2005)

    Article  Google Scholar 

  3. H. Sharma, K. Sethi, P.M. Raj, R. Tummala, J. Mater. Sci. Mater. Electron. 23, 528–535 (2012)

    Article  Google Scholar 

  4. P. Muthana, K. Srinivasan, A.E. Engin, M. Swaminathan, R. Tummala, V. Sundaram et al., IEEE Trans. Adv. Packag. 31(2), 234–245 (2008)

    Article  Google Scholar 

  5. T. Nakamura, J. Appl. Phys. 88, 348 (2000)

    Article  Google Scholar 

  6. S. Shannigrahi, K. Pramoda, F. Nugroho, J. Magn. Magn. Mater. 324(2), 140–145 (2012)

    Article  Google Scholar 

  7. H. Bayrakdar, J. Magn. Magn. Mater. 323(14), 1882–1885 (2011)

    Article  Google Scholar 

  8. J. Lee, Y.-K. Hong, S. Bae, J. Jalli, G.S. Abo, J. Park et al., J. Appl. Phys. 109, 07E530 (2011)

    Google Scholar 

  9. L. Yang, L.J. Martin, D. Staiculescu, C. Wong, M.M. Tentzeris, IEEE Trans. Microw. Theory Tech. 56(12), 3223–3230 (2008)

    Article  Google Scholar 

  10. Magnetics, A Critical Comparison of Ferrites with Other Magnetic Materials. (Magnetics, 2000), http://mag-inc.com. Accessed 22 April 2015

  11. F. Mazaleyrat, L. Varga, J. Magn. Magn. Mater. 215, 253–259 (2000)

    Article  Google Scholar 

  12. P. Gramatyka, R. Nowosielski, P. Sakiewicz, J. Achiev. Mater. Manuf. Eng. 20(1–2), 115–118 (2007)

    Google Scholar 

  13. Y. Hayakawa, A. Makino, H. Fujimori, A. Inoue, J. Appl. Phys. 81, 3747–3752 (1997)

    Article  Google Scholar 

  14. S. Ohnuma, H. Fujimori, T. Masumoto, X. Xiong, D. Ping, K. Hono, Appl. Phys. Lett. 82, 946–948 (2003)

    Article  Google Scholar 

  15. S. Ge, D. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii et al., J. Phys. D Appl. Phys. 40, 3660 (2007)

    Article  Google Scholar 

  16. D.S. Gardner, G. Schrom, F. Paillet, B. Jamieson, T. Karnik, S. Borkar, IEEE Trans. Magn. 45(10), 4760–4766 (2009)

    Article  Google Scholar 

  17. P.M. Raj, H. Sharma, G.P. Reddy, N. Altunyurt, M. Swaminathan, R. Tummala et al., J. Electron. Mater. 43(4), 1–10 (2014)

    Article  Google Scholar 

  18. R. Nowosielski, J. Achiev. Mater. Manuf. Eng. 24(1), 68–77 (2007)

    Google Scholar 

  19. A. Taghvaei, H. Shokrollahi, K. Janghorban, Mater. Des. 31(1), 142–148 (2010)

    Article  Google Scholar 

  20. A. Taghvaei, H. Shokrollahi, A. Ebrahimi, K. Janghorban, Mater. Chem. Phys. 116(1), 247–253 (2009)

    Article  Google Scholar 

  21. N. Tang, W. Zhong, X. Wu, H. Jiang, W. Liu, Y. Du, Mater. Lett. 59(14–15), 1723–1726 (2005)

    Article  Google Scholar 

  22. Y. Zhan, S. Wang, D. Xiao, J. Budnick, W. Hines, IEEE Trans. Magn. 37(4), 2275–2277 (2001)

    Article  Google Scholar 

  23. K. Peng, L. Zhou, A. Hu, Y. Tang, D. Li, Mater. Chem. Phys. 111(1), 34–37 (2008)

    Article  Google Scholar 

  24. A. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200(1–3), 552–570 (1999)

    Article  Google Scholar 

  25. D. Fiorani, Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005)

    Book  Google Scholar 

  26. P. Scherrer, Göttinger Nachrichten Math Phys 2, 98–100 (1918)

    Google Scholar 

  27. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, Surf. Sci. 600(9), 1771–1779 (2006)

    Article  Google Scholar 

  28. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, R. Díaz, Appl. Surf. Sci. 258(22), 8807–8813 (2012)

    Article  Google Scholar 

  29. S. D’addato, V. Grillo, S. Altieri, R. Tondi, S. Valeri, S. Frabboni, J. Phys. Condens. Matter 23(17), 175003 (2011)

    Article  Google Scholar 

  30. H. Shokrollahi, K. Janghorban, Mater. Sci. Eng. B 134(1), 41–43 (2006)

    Article  Google Scholar 

  31. G. Herzer, IEEE Trans. Magn. 26(5), 1397–1402 (1990)

    Article  Google Scholar 

  32. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102(5), 1413 (1956)

    Article  Google Scholar 

  33. S.P. Gubin, Y.A. Koksharov, G. Khomutov, G.Y. Yurkov, Russ. Chem. Rev. 74(6), 489 (2005)

    Article  Google Scholar 

  34. I. Youngs, N. Bowler, K. Lymer, S. Hussain, J. Phys. D Appl. Phys. 38(2), 188 (2005)

    Article  Google Scholar 

  35. R. Ramprasad, P. Zurcher, M. Petras, M. Miller, P. Renaud, J. Appl. Phys. 96, 519 (2004)

    Article  Google Scholar 

  36. P. Chen, M. Liu, L. Wang, Y. Poo, R.-X. Wu, J. Magn. Magn. Mater. 323(23), 3081–3086 (2011)

    Article  Google Scholar 

  37. Y. Li, G. Li, Physics of Ferrites (Science, Beijing, 1978), p. 335

    Google Scholar 

  38. S.B. Liao, Ferromagnetic Physics (Science, Beijing, 1992), pp. 17–81

    Google Scholar 

  39. M.A. Abshinova, A.V. Lopatin, N.E. Kazantseva, J. Vilčáková, P. Sáha, Compos. A Appl. Sci. Manuf. 38(12), 2471–2485 (2007)

    Article  Google Scholar 

  40. M. Wu, Y. Zhang, S. Hui, T. Xiao, S. Ge, W. Hines et al., Appl. Phys. Lett. 80, 4404–4406 (2002)

    Article  Google Scholar 

  41. B. Lu, X. Dong, H. Huang, X. Zhang, X. Zhu, J. Lei et al., J. Magn. Magn. Mater. 320, 1106–1111 (2008)

    Article  Google Scholar 

  42. G. Bertotti, Hysteresis in Magnetism, 1st edn. (Academic Press, New York, 1998)

    Google Scholar 

  43. C. Kittel, Phys. Rev. 73(2), 155 (1948)

    Article  Google Scholar 

  44. X. Zhang, X. Dong, H. Huang, Y. Liu, W. Wang, X. Zhu et al., Appl. Phys. Lett. 89, 053115 (2006)

    Article  Google Scholar 

  45. F. Fonseca, G. Goya, R. Jardim, R. Muccillo, N. Carreno, E. Longo et al., Phys. Rev. B 66(10), 104406 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Markondeya Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, K.P., Sharma, H., Markondeya Raj, P. et al. Structure-magnetic property correlations in nickel-polymer nanocomposites. J Mater Sci: Mater Electron 27, 154–162 (2016). https://doi.org/10.1007/s10854-015-3731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3731-7

Keywords

Navigation