Skip to main content
Log in

Cr modified Raman, optical band gap and magnetic properties of SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Cr (1, 3, 5, 7 and 10 at.%) doped SnO2 nanoparticles were synthesized in aqueous solution by a low cost chemical co-precipitation method without using any stabilizing agent. The effects of Cr doping on Raman, optical band gap and magnetic properties of SnO2 nanoparticles were investigated. Particle size is found to decrease with Cr doping into the SnO2 matrix which was confirmed by TEM. Besides of the fundamental mode of vibration, two additional peaks are also observed in Raman spectra which are correlated to Cr. The absorption spectra showed two peaks at 340 and 454 nm. The absorbance peak at 340 nm is assigned to the transition from valence band (VB) to conduction band (CB) and the peak at 454 nm was due to the transition from VB to mid gap energy level introduced by Cr. The optical band gap of undoped SnO2 nanoparticles is calculated to be 3 eV. With the doping of Cr in SnO2, band gap increases due to the decrease in particle size. The emission intensity is found to decrease with the increase in Cr doping due to the emission from CB to mid gap energy levels introduced by Cr between CB and VB. Undoped SnO2 nanoparticles show room temperature ferromagnetism due to the presence of defects and oxygen vacancies. The heavily doped SnO2 nanoparticles show paramagnetic nature due to the antiferromagnetic coupling between Cr and its nearest neighbour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, J. Lumin. 131, 1 (2011)

    Article  Google Scholar 

  2. S.Y. Choi, M.H. Kim, Y. Kwon, Phys. Chem. Chem. Phys. 14, 3576 (2012)

    Article  Google Scholar 

  3. S. Kumar, S. Bhunia, A.K. Ojha, Phys. E 66, 74 (2015)

    Article  Google Scholar 

  4. S. Kumar, A.K. Ojha, AIP Adv. 3, 052109 (2013)

    Article  Google Scholar 

  5. V. Agrahari, M.C. Mathpal, M. Kumar, A. Agarwal, J. Alloys Compd. 622, 48 (2015)

    Article  Google Scholar 

  6. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  Google Scholar 

  7. Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, Nanotechnology 15, 1682 (2004)

    Article  Google Scholar 

  8. Z. Peng, Z. Shi, M. Liu, Chem. Commun. 21, 25 (2000)

    Google Scholar 

  9. A. Aoki, H. Sasakura, J. Appl. Phys. 9, 582 (1970)

    Article  Google Scholar 

  10. H.S. Kim, L. Bi, G.F. Dionne, C.A. Ross, H.J. Paik, Phys. Rev. B Condens. Matter Mater. Phys. 77, 214 (2008)

    Google Scholar 

  11. R. Kalai Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C 112, 1825 (2008)

    Article  Google Scholar 

  12. S.K. Misra, S.I. Andronenko, S. Rao, S.V. Bhat, C. Van Komen, A. Punnoose, J. Appl. Phys. 105, 07C514 (2009)

    Article  Google Scholar 

  13. L. Zhang, S. Ge, Y. Zuo, J. Wang, J. Qi, Scr. Mater. 63, 953 (2010)

    Article  Google Scholar 

  14. K. Subramanyam, N. Sreelekha, G. Murali, D. Reddy, R.P. Vijayalakshmi, Phys. B 454, 86 (2014)

    Article  Google Scholar 

  15. N. Lavanya, S. Radhakrishnan, C. Sekar, M. Navaneethan, Y. Hayakawa, Analyst 138, 2061 (2013)

    Article  Google Scholar 

  16. T. Gandhi, R. Babu, K. Ramamurthi, Mater. Sci. Semicond. Process. 16, 472 (2013)

    Article  Google Scholar 

  17. M.A.P. Herrero, D. Maestre, J.R. Castellanos, A. Cremades, J. Piqueras, J.M.G. Calbet, CrystEngComm 16, 2969 (2014)

    Article  Google Scholar 

  18. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  19. H. Kimura, T. Fukumura, H. Koinuma, M. Kawasaki, Phys. E 10, 265 (2001)

    Article  Google Scholar 

  20. A.K. Mishra, T.P. Sinha, S. Bandyopadhyay, D. Das, Mater. Chem. Phys. 125, 252 (2011)

    Article  Google Scholar 

  21. G. Korotcenkov, S.D. Han, Mater. Chem. Phys. 113, 756 (2009)

    Article  Google Scholar 

  22. F.H. Aragon, J.A.H. Coaquira, P. Hidalgo, S.L.M. Brito, D. Gouvea, R.H.R. Castro, J. Non-Cryst. Solids 356, 2960 (2010)

    Article  Google Scholar 

  23. S.A. Ahmed, Solid State Commun. 150, 2190 (2010)

    Article  Google Scholar 

  24. L. Fang, X. Zu, C. Liu, Z. Li, G. Peleckis, S. Zhu, H. Liu, L. Wang, J. Alloys Compd. 491, 679 (2010)

    Article  Google Scholar 

  25. B. Sathyaseelan, K. Senthilnathan, T. Alagesan, R. Jayavel, K. Sivakumar, Mater. Chem. Phys. 124, 1046 (2010)

    Article  Google Scholar 

  26. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  Google Scholar 

  27. M.A. Wahab, Solid State Physics, 2nd edn. (Narosa Publishing House, New Delhi, 2010)

    Google Scholar 

  28. V. Raghavan, Materials Science and Engineering (Prentice Hall of India, New Delhi, 1996)

    Google Scholar 

  29. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    Article  Google Scholar 

  30. M.C. Mathpal, A.K. Tripathi, P. Kumar, R. Balasubramaniyan, M.K. Singh, J.S. Chung, S.H. Hur, A. Agarwal, Phys. Chem. Chem. Phys. 16, 23874 (2014)

    Article  Google Scholar 

  31. M. Zhu, P. Chen, M. Liu, ACS Nano 5, 4529 (2011)

    Article  Google Scholar 

  32. S. Kumar, A.K. Ojha, R.K. Singh, J. Raman Spectrosc. 45, 717 (2014)

    Article  Google Scholar 

  33. A. Dieguez, A.R. Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)

    Article  Google Scholar 

  34. H. Matralis, M. Ciardelli, M. Ruwet, P. Grange, J. Catal. 157, 523 (1995)

    Article  Google Scholar 

  35. G. Ramis, L. Yi, G. Busca, Catal. Today 28, 373 (1996)

    Article  Google Scholar 

  36. T. Passuello, M. Pedroni, F. Piccinelli, S. Polizzi, P. Marzola, S. Tambalo, G. Conti, D. Benati, F. Vetrone, M. Bettinelli, A. Speghini, Nanoscale 4, 7682 (2012)

    Article  Google Scholar 

  37. M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, M. Rajarajan, J. Sol-Gel. Sci. Technol. 65, 301 (2013)

    Article  Google Scholar 

  38. X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, H. Ma, Solid State Commun. 144, 269 (2007)

    Article  Google Scholar 

  39. C. Wang, M. Ge, J.Z. Jiang, Appl. Phys. Lett. 97, 042510 (2010)

    Article  Google Scholar 

  40. G.A. Alanko, A. Thurber, C.B. Hanna, A. Punnoose, J. Appl. Phys. 111, 07C321 (2012)

    Article  Google Scholar 

  41. P. Wu, B. Zhou, W. Zhou, Appl. Phys. Lett. 100, 182405 (2012)

    Article  Google Scholar 

  42. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, A. Agarwal, J. Mater. Sci. Mater. Electron. 26(12), 9571–9582 (2015)

    Article  Google Scholar 

  43. V. Agrahari, M.C. Mathpal, S. Kumar, A. Agarwal, J. Mater. Sci. Mater. Electron. 27(3), 3053-3064 (2016). doi:10.1007/s10854-015-4129-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Chandra Mathpal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrahari, V., Mathpal, M.C., Kumar, S. et al. Cr modified Raman, optical band gap and magnetic properties of SnO2 nanoparticles. J Mater Sci: Mater Electron 27, 6020–6029 (2016). https://doi.org/10.1007/s10854-016-4525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4525-2

Keywords

Navigation