Skip to main content
Log in

Variation of optical, structural, electrical and compositional properties of thermally evaporated CdTe thin films due to substrate temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Alteration of substrate temperature of thermally evaporated CdTe thin films can cause changes to the film structure and composition, affecting its optical, electrical as well as morphological properties. In this respect, polycrystalline CdTe thin films were deposited using thermal evaporation technique under different substrate temperatures from 125 to 300 °C. The optical, structural, compositional, morphological and electrical properties were studied using UV–visible spectroscopy, GIXRD, EDX, SEM and van der Pauw method, respectively. Optical measurements revealed that the band gap of the films slightly increase with increasing substrate temperature. Structurally, the lattice parameter and the crystallite size of the CdTe films deposited under a substrate temperature of 200 °C was found to be considerably higher than the rest of the substrate temperatures investigated. Texture coefficient indicate that the (111) plane becomes preferable as the substrate temperature is elevated to 300 °C. The lowest electrical resistivity was also found for samples deposited under a substrate temperature of 200 °C. Furthermore, EDX results reveals the composition of CdTe film considerably vary with respect to the substrate temperature at which the film was fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.A.J. Al-Douri, F.Y. Al-Shakily, M.F.A. Alias, A.A. Alnajjar, Adv. Condens. Matter. Phys. 2010, 947684 (2010)

    Google Scholar 

  2. V. Kolkovsky, T. Wojciechowski, T. Wojtowicz, G. Karczewski, Acta Phys. Pol. A 114, 1173 (2008)

    Article  Google Scholar 

  3. T.H. Myers, J.R. Meyer, C.A. Hoffman, L.R. Ram-Mohan, Appl. Phys. Lett. 61, 1814 (1992)

    Article  Google Scholar 

  4. A.A. Alnajjar, F.Y. Al-Shaikley, M.F.A. Alias, J. Electron Devices 16, 1306 (2012)

    Google Scholar 

  5. S. Chun, S. Lee, Y. Jung, J.S. Bae, J. Kim, D. Kim, Curr. Appl. Phys. 13, 211 (2013)

    Article  Google Scholar 

  6. J.P. Enriquez, N.R. Mathews, G.P. Hernandez, X. Mathew, Mater. Chem. Phys. 142, 432 (2013)

    Article  Google Scholar 

  7. P. Hu, B. Li, L. Feng, J. Wu, H. Jiang, H. Yang, X. Xiao, Surf. Coat. Technol. 213, 84 (2012)

    Article  Google Scholar 

  8. H.S. Patel, J.R. Rathod, K.D. Patel, V.M. Pathak, Am. J. Mater. Sci. Technol. 1, 11 (2012)

    Google Scholar 

  9. S.K. Pandey, U. Tiwari, R. Raman, C. Prakash, V. Krishnab, V. Dutta, K. Zimik, Thin Solid Film 473, 54 (2005)

    Article  Google Scholar 

  10. S. Chander, M.S. Dhaka, Mater. Sci. Semicond. Process. 40, 708 (2015)

    Article  Google Scholar 

  11. J.P. Enriquez, X. Mathew, J. Cryst. Growth 259, 215 (2003)

    Article  Google Scholar 

  12. I. Polat, S. Yilmaz, E. Bacaksiz, M. Altunbas, M. Tomakin, Turk. J. Phys. 35, 197 (2011)

    Google Scholar 

  13. M.A.F. Mendoza, R.C. Perez, G.T. Delgado, J.M. Marin, A.C. Orea, O.Z. Angel, J. Sol. Energy Mater. Sol. Cells 95, 2023 (2011)

    Article  Google Scholar 

  14. R. Castro-Rodriguez, P.B. Perez, D. Perez-Delgado, F. Caballero-Briones, J.L. Pena, Mater. Lett. 37, 281 (1998)

    Article  Google Scholar 

  15. B. Shan, W. Wu, K. Feng, H. Nan, Mater. Lett. 166, 85 (2016)

    Article  Google Scholar 

  16. J.S. Wang, Y.H. Tsai, C.W. Chen, Z.Y. Dai, S.C. Tong, C.S. Yang, C.H. Wu, C.T. Yuan, J.L. Shen, J. Alloys Compd. 592, 53 (2014)

    Article  Google Scholar 

  17. O. Toma, L. Ion, M. Girtan, S. Antohe, Sol. Energy 108, 51 (2014)

    Article  Google Scholar 

  18. M.A. Mahdi, J.J. Hassan, S.J. Kasim, S.S. Ng, Z. Hassan, Mater. Sci. Semicond. Process. 26, 87 (2014)

    Article  Google Scholar 

  19. Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)

    Article  Google Scholar 

  20. M. Ali, W.A.A. Syeda, M. Zubair, N.A. Shah, A. Mehmood, Appl. Surf. Sci. 284, 482 (2013)

    Article  Google Scholar 

  21. V.V. Brus, M.N. Solovan, E.V. Maistruk, I.P. Kozyarskii, P.D. Maryanchuk, K.S. Ulyanytsky, J. Rappich, Phys. Solid State 56, 1947 (2014)

    Article  Google Scholar 

  22. K.S. Rahman, F. Haque, N.A. Khan, M.A. Islam, M.M. Alam, Z.A. Alothman, K. Sopian, N. Amin, Chalcogenide Lett. 11, 129 (2014)

    Google Scholar 

  23. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, J. Phys. D Appl. Phys. 49, 095109 (2016)

    Article  Google Scholar 

  24. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, Procedia Eng. 139, 64 (2016)

    Article  Google Scholar 

  25. N. Romeo, A. Bosio, D. Menossi, A. Romeo, M. Aramini, Energy Procedia 57, 65 (2014)

    Article  Google Scholar 

  26. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, Sol. Energy Mater. Sol. Cells 90, 694 (2006)

    Article  Google Scholar 

  27. C. Ding, Z. Ming, B. Li, L. Feng, J. Wu, Mater. Sci. Eng. B Adv. 178, 801 (2013)

    Article  Google Scholar 

  28. D. Geethalakshmi, N. Muthukumarasamy, R. Balasundaraprabhu, Adv. Mater. Res. 678, 131 (2013)

    Article  Google Scholar 

  29. G. Zoppi, K. Durose, S.J.C. Irvine, V. Barrioz, Semicond. Sci. Technol. 21, 763 (2006)

    Article  Google Scholar 

  30. S. Gupta, K. Munirathnam, Indian J. Pure Appl. Phys. 52, 44 (2014)

    Google Scholar 

  31. K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89 (2015)

    Article  Google Scholar 

  32. G.G. Rusu, M. Rusu, Solid State Commun. 116, 363 (2000)

    Article  Google Scholar 

  33. G.P. Hernandez, X. Mathew, J.P. Enriquez, B.E. Morales, M.M. Lira, J.A. Toledo, A.S. Juarez, J. Campos, J. Mater. Sci. 39, 1515 (2004)

    Article  Google Scholar 

  34. N.A. Shah, A. Ali, Z. Ali, A. Maqsood, A.K.S. Aqili, J. Cryst. Growth 284, 477 (2005)

    Article  Google Scholar 

  35. M. Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley, Weinheim, 2006), p. 244

    Google Scholar 

  36. S. Brennan, A. Munkholm, O.S. Leung, W.D. Nix, Phys. B 283, 125 (2000)

    Article  Google Scholar 

  37. W. Gissler, H.A. Jehn, Advanced Techniques for Surface Engineering (Kluwer Academic Publishers, Dordrecht, 1992), p. 286

    Book  Google Scholar 

  38. M.B. Clemens, J.A. Bain, MRS Bull. 17, 46 (1992)

    Article  Google Scholar 

  39. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  40. S.J. Ikhmayies, Modern Aspects of Bulk Crystal and Thin Film Preparation (InTech, Croatia, 2012), p. 343

    Google Scholar 

  41. J.H. Lee, Y.K. Park, K.J. Yang, Jpn. J. Appl. Phys. 40, 6741 (2001)

    Article  Google Scholar 

  42. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis (Kluwer Academic Publishers, New York, 2003), p. 286

    Book  Google Scholar 

  43. C.J. Summers, E.L. Meeks, N.W. Cox, J. Vac. Sci. Technol. B 2, 224 (1984)

    Article  Google Scholar 

  44. M.M. Tessema, M.Sc. Thesis, University of Toledo (2009)

  45. Y.S. Wu, C.R. Becker, A. Waag, K.V. Schierstedt, R.N.B. Tassius, G. Landwehr, Appl. Phys. Lett. 62, 1510 (1993)

    Article  Google Scholar 

  46. M. Becerrila, O.Z. Angel, J.R.V. Garcia, R.R. Bon, J.G. Hernandez, J. Phys. Chem. Solids 62, 1081 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance from National Science Foundation of Sri Lanka (NSF, RG/12/BS/03), Prof. S. Sivananthanthan of University of Illinois at Chicago, USA and the Postgraduate Institute of Science of University of Peradeniya, Sri Lanka are gratefully acknowledged. Prof. M.A.K.L. Dissanayake of National Institute of Fundamental Studies of Sri Lanka and Prof. K. Premaratne of Department of Physics at University of Peradeniya, Dr. C.V. Hettiarachchi of Department of Chemistry at University of Peradeniya, Dr. R. Dhere of Sivananthan Laboratories Inc., Bolingbrook, IL, USA, Mr. P.G.S.A. Bandara of University of Mississippi, Oxford, MS, USA, Mr. R.G.S.A. Perera of Measurement Units, Standards and Services Department in Sri Lanka, Mr. M.G.S.P. Amarasinghe and Mr. M.C. Abeysinghe of Department of Physics, University of Peradeniya and Dr. M. Nandasiri of Western Michigan University, USA, are acknowledged for their valuable suggestions, support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Dassanayake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumarasinghe, P.K.K., Dissanayake, A., Pemasiri, B.M.K. et al. Variation of optical, structural, electrical and compositional properties of thermally evaporated CdTe thin films due to substrate temperature. J Mater Sci: Mater Electron 28, 276–283 (2017). https://doi.org/10.1007/s10854-016-5521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5521-2

Keywords

Navigation