Skip to main content
Log in

Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, novel three-phase polymer nanocomposites comprising of polyvinylidene fluoride (PVDF), titanium dioxide (TiO2) nanoparticles and graphene oxide (GO) were prepared using colloidal blending. The PVDF/TiO2/GO nanocomposites were characterized by FTIR, XRD, TGA, optical microscopy, SEM, AFM and contact angle analysis. The dielectric properties of these three-phase polymer nanocomposites were investigated using broadband dielectric spectroscopy in the frequency range 50 Hz–20 MHz and temperature in the range 40–150 °C. The FTIR and XRD results infer good interaction between the constituents of nanocomposites. The microscopic studies infer homogeneous dispersion and distribution of TiO2 nanoparticles and GO within the PVDF matrix. A notable improvement in the thermal stability of PVDF was observed by the addition of TiO2 and GO as hybrid fillers. The dielectric performance of PVDF/TiO2/GO nanocomposite films was significantly improved as compared to PVDF/TiO2 (90/10) nanocomposite film. The dielectric constant increases from 18.57 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 165.16 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. In addition, the dielectric loss also increases from 1.71 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 3.68 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. These intriguing properties of PVDF/TiO2/GO nanocomposites could shed some light on the incorporation of different types of hybrid fillers in a suitable polymer matrix for the development of novel three-phase nanocomposites as intelligent materials for embedded passive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  2. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  5. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, Science 320, 1308 (2008)

    Article  Google Scholar 

  6. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  Google Scholar 

  7. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  8. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  9. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, C.G. Wallace, Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  10. O.K. Park, J.Y.H. Wang, M. Goh, J.H. Lee, B.C. Ku, N.H. You, Macromolecules 46, 3505–3511 (2013)

    Article  Google Scholar 

  11. H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)

    Article  Google Scholar 

  12. J.I. Paredes, S. Villar-Podil, A. Martinez-Alonso, J.M.D. Tascon, Langmuir 24, 19 (2008)

    Article  Google Scholar 

  13. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater Sci. 56, 1178 (2011)

    Article  Google Scholar 

  14. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008)

    Article  Google Scholar 

  15. K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)

    Article  Google Scholar 

  16. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240–1253 (2016)

    Article  Google Scholar 

  17. W.E. Mahmoud, Eur. Polym. J. 47, 1534 (2011)

    Article  Google Scholar 

  18. Z. Xu, C. Gao, Macromolecules 43, 6716 (2010)

    Article  Google Scholar 

  19. X.M. Yang, L. Li, S.M. Shang, X.M. Tao, Polymer 51, 3431 (2010)

    Article  Google Scholar 

  20. J. Ahmad, K. Deshmukh, M. Habib, M.B. Hagg, J. Sci. Eng. 39, 6805–6814 (2014)

    Google Scholar 

  21. J. Ahmad, K. Deshmukh, M.B. Hagg, Int. J. Polym. Anal. Charact. 18, 287–296 (2013)

    Article  Google Scholar 

  22. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  23. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, J. Am. Chem. Soc. 126, 14943–14949 (2004)

    Article  Google Scholar 

  24. K. Zakrzewska, Thin Solid Films 391, 229–238 (2001)

    Article  Google Scholar 

  25. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 177, 347–414 (1998)

    Article  Google Scholar 

  26. Y. Lei, L.D. Zhang, J.C. Fan, Chem. Phys. Lett. 338, 231 (2001)

    Article  Google Scholar 

  27. Y.J. Wang, D. Kim, Electrochim. Acta 52, 3181–3189 (2007)

    Article  Google Scholar 

  28. S. Yang, X. Feng, K. Mullen, Adv. Mater. 23, 3575–3579 (2011)

    Article  Google Scholar 

  29. Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng, W. Li, ACS Nano 4, 6515 (2010)

    Article  Google Scholar 

  30. Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, H. Dai, Nano Res. 3, 701 (2010)

    Article  Google Scholar 

  31. Z. Qiong, H. YunQiu, C. Xiaogang, H. DongHu, L. LinJiang, Y. Ting, J. LingLi, Chin. Sci. Bull. 56, 331–339 (2011)

    Article  Google Scholar 

  32. V. Stengl, S. Bakardjieva, T.M. Grygar, J. Bludska, M. Kormunda, Chem. Cent. J. 7, 41–52 (2013)

    Article  Google Scholar 

  33. S.M. Pawde, K. Deshmukh, Polym. Eng. Sci. 49, 808–818 (2009)

    Article  Google Scholar 

  34. S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 114, 2169–2179 (2009)

    Article  Google Scholar 

  35. S.H. Zhang, N.Y. Zhang, C. Huang, K.L. Ren, Q.M. Zhang, Adv. Mater. 7, 1897–1901 (2005)

    Article  Google Scholar 

  36. Z. Zhicheng, T.C. Mike-Chung, Macomolecules 40, 9391–9397 (2007)

    Article  Google Scholar 

  37. H.S. Song, D.B. Liu, Chem. Eng. 191, 1 (2011)

    Google Scholar 

  38. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625–1629 (2003)

    Article  Google Scholar 

  39. F. Liu, R. Huo, X. Huang, Q. Lei, P. Jiang, IEEE Trans. Dielectr. Electr. Insul. 21, 1446–1454 (2014)

    Article  Google Scholar 

  40. W.S. Hummers, R.E. Offman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  41. S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 101, 4169–4171 (2006)

    Article  Google Scholar 

  42. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 23, 159 (2016)

    Article  Google Scholar 

  43. R.H. Upadhyay, R.R. Deshmukh, J. Electrost. 71, 945–950 (2013)

    Article  Google Scholar 

  44. K. Deshmukh, J. Ahmad, G. Joshi, M.B. Ahamed, M.B. Hagg, J. Polym. Res. 21, 393–401 (2014)

    Article  Google Scholar 

  45. H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, J. Am. Chem. Soc. 130, 1362–1366 (2008)

    Article  Google Scholar 

  46. S.K.K. Pasha, K. Deshmukh, M.B. Ahamed, K. Chidambaram, M.K. Mohanapriya, N.A.N. Raj, Adv. Polym. Technol. (2015). doi:10.1002/adv.21616

    Google Scholar 

  47. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Int. J. Chem. Technol. Res. 8, 32–41 (2015)

    Google Scholar 

  48. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Mater. Today Proceed. 3, 1864–1873 (2016)

    Article  Google Scholar 

  49. K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, K. Chidambaram, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5267-x

    Google Scholar 

  50. M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Adv. Mater. Lett. (2016). doi:10.5185/amlett.2016.6555

    Google Scholar 

  51. F. He, S. Lau, H.L. Chan, J. Fan, Adv. Mater. 21, 710–715 (2009)

    Article  Google Scholar 

  52. X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Nanotechnology 23, 455705 (2012)

    Article  Google Scholar 

  53. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, IEEE Trans. Dielectr. Electr. Insul. 12, 629–643 (2005)

    Article  Google Scholar 

  54. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai, 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalim Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, K., Ahamed, M.B., Deshmukh, R.R. et al. Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci: Mater Electron 28, 559–575 (2017). https://doi.org/10.1007/s10854-016-5559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5559-1

Keywords

Navigation