Skip to main content
Log in

Gamma-ray shielding properties of zinc oxide soda lime silica glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the gamma ray shielding properties of zinc oxide soda lime silica, (ZnO)x(SLS)1−x glasses with 0 ≥ x ≥ 50 wt% have been investigated. By using WinXCom computer software, the mass attenuation coefficient (µ/ρ) and half value layer (HVL) for total photon interaction in the energy range of 1 keV–100 GeV were calculated. Furthermore and by Geometric Progression method exposure buildup factor values were calculated for incident photon energy 0.015–15 MeV up to penetration depths of 40 mfp (mean free path). The addition of zinc oxide (ZnO) into soda lime silica (SLS) glass resulted in an increase the mass attenuation coefficient and decreases both the half value layer and exposure buildup factor. The obtained results of the selected glass series have been compared, in terms of mass attenuation coefficient, half value layer and exposure buildup factor with some common shielding materials. The shielding effectiveness of the selected glasses is found comparable to that of common ones; which indicates that the SLS glasses with suitable ZnO content may be developed as gamma ray shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Bandyopadhyay, A.K. Mukhopadhyay, J. Non-Cryst. Solids 362, 101 (2013)

    Article  Google Scholar 

  2. Q. Zhou, L. Xu, L. Liu, W. Wang, C. Zhu, F. Gan, Opt. Mater. 25, 313 (2004)

    Article  Google Scholar 

  3. Q. Yanbo, D. Ning, P. Mingying, Y. Luyun, C. Danping, Q. Jianrong, Z. Conyshan, T. Akai, J. Rare Earth 24, 765 (2006). http://www.sciencedirect.com.sdl.idm.oclc.org/science/article/pii/S100207210760026X

  4. A.B. Jadlika, A.G. Clare, J. Non-Cryst. Solids 281, 6 (2001)

    Article  Google Scholar 

  5. M.M. Khalil, Appl. Phys. A 86, 505 (2007)

    Article  Google Scholar 

  6. C. Mercier, G. Palavit, L. Montagne, C. Follet-Houttemane, C. R. Chim. 5, 693 (2002)

    Article  Google Scholar 

  7. E. Axinte, Mater. Des. 32, 1717 (2011)

    Article  Google Scholar 

  8. S. Karlsson, B. Jonson, C. Stalhandske, Eur. J. Glass Sci. Technol. A 51, 41 (2010)

    Google Scholar 

  9. H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, Nucl. Instr. Method. B 207, 257 (2003)

    Article  Google Scholar 

  10. V.P. Singh, N.M. Badiger, J. Kaewkhao, J. Non-Cryst. Solids 404, 167 (2014)

    Article  Google Scholar 

  11. M.I. Sayyed, H. Elhouichet, Radiat. Phys. Chem. 130, 335 (2017)

    Article  Google Scholar 

  12. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Nucl. Sci. Eng. 94, 24 (1986)

    Google Scholar 

  13. Y. Harima, Radiat. Phys. Chem. 41, 631 (1993)

    Article  Google Scholar 

  14. C. Suteau, M. Chiron, Radiat. Prot. Dosim. 116, 489 (2005)

    Article  Google Scholar 

  15. D. Sardari, A. Abbaspour, S. Baradaran, F. Babapour, Appl. Radiat. Isot. 67, 1438 (2009)

    Article  Google Scholar 

  16. ANSI/ANS-6.4.3, Gamma Ray Attenuation coefficient and buildup factors for engineering materials (American Nuclear Society, La Grange Park, 1991)

    Google Scholar 

  17. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Radiation. Radiat. Phys. Chem. 98, 14 (2014)

    Article  Google Scholar 

  18. S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittals, J. Korean Phys. Soc. 59, 2039 (2011)

    Article  Google Scholar 

  19. V.P. Singh, N.M. Badiger, Glass Phys. Chem. 41, 276 (2015)

    Article  Google Scholar 

  20. M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, J. Mater. Sci. Mater. Electron. 26, 3722 (2015)

    Article  Google Scholar 

  21. H. Hubbell, Phys. Med. Biol. 44, R1 (1999)

    Article  Google Scholar 

  22. M.I. Sayyed, Chin. J. Phys. 54, 408 (2016)

    Article  Google Scholar 

  23. Y. Elmahroug, B. Tellili, C. Souga, Ann. Nucl. Eng. 63, 619 (2014)

    Article  Google Scholar 

  24. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 71, 653 (2004)

    Article  Google Scholar 

  25. M.I. Sayyed, J. Alloys Compd. 688, 111 (2016)

    Article  Google Scholar 

  26. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 60, 23 (2001)

    Article  Google Scholar 

  27. Y. Harima, Nucl. Sci. Eng. 83, 299 (1983)

    Google Scholar 

  28. M.I. Sayyed, S.I. Quashu, Z.Y. Khattari, J. Alloys Compd. (2016). doi:10.1016/j.jallcom.2016.11.160

    Google Scholar 

  29. I.I. Bashter, Ann. Nucl. Energy 24(1389), 1389 (1997)

    Article  Google Scholar 

  30. C. Bootjomchai, R. Laopaiboon, Nucl. Instrum. Methods B 323, 42 (2014)

    Article  Google Scholar 

  31. V.P. Singh, N.M. Badiger, Int. J. Nucl. Energy Sci. Technol. 7, 75 (2012)

    Article  Google Scholar 

  32. B. Oto, N. Yıldız, F. Akdemir, E. Kavaz, Progr. Nucl.Energy 85, 391 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from University of Tabuk is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyed, M.I., Elmahroug, Y., Elbashir, B.O. et al. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J Mater Sci: Mater Electron 28, 4064–4074 (2017). https://doi.org/10.1007/s10854-016-6022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6022-z

Keywords

Navigation