Skip to main content

Advertisement

Log in

Photovoltaic performance and impedance spectroscopy of a purely organic dye and most common metallic dye based dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, performances of an organic electron donor–π-bridge–electron acceptor (D–π–A) type RK1 dye and the most common metallic N719 dye based dye-sensitized solar cells (DSSCs) were compared. To gain insight into the behavior of these devices, current–voltage and impedance spectroscopic measurements were performed. From the current–voltage data, the parameters of cells including open-circuit voltage, short-circuit current, fill factor, solar energy-to-electricity conversion efficiency, series resistance, shunt resistance, and ideality factor were extracted. The RK1 based cell showed higher photovoltage, higher short-circuit current, solar energy-to-electricity conversion efficiency, higher shunt resistance and ideality factor. Using the Mott-Schottky plots, electrical properties of the cells were investigated and lower electron concentration was found for the RK1-DSSC. This high performance can be attributed to the higher absorption coefficient of the RK1 dye and relatively higher induced positive band-shift of the conduction band edge of the TiO2 semiconductor. The trends of the recombination resistance and the chemical capacitance as observed in the measured impedance spectra have also confirmed high photovoltaic performance of the RK1 based cell. Impedance spectra of the devices were observed both voltage and frequency dependent. At low frequencies, significant contribution of trap states was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron, J.N. Clifford et al., A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes Combining high efficiency and outstanding stability. Sci. Rep. 4, 4033 (2014)

    Article  Google Scholar 

  3. D. Joly, L. Pelleja, S. Narbey, F. Oswald, T. Meyer, Y. Kervella et al., Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy Environ. Sci. 8, 2010–2018 (2015)

    Article  Google Scholar 

  4. S. Sigdel, H. Elbohy, J. Gong, N. Adhikari, K. Sumathy, H. Qiao et al., Dye-sensitized solar cells based on porous hollow tin oxide nanofibers. IEEE Trans. Electron Devices 62, 2027–2032 (2015)

    Article  Google Scholar 

  5. H. Elbohy, A. Aboagye, S. Sigdel, Q. Wang, M.H. Sayyad, L. Zhang et al., Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 3, 17721–17727 (2015)

    Article  Google Scholar 

  6. M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  Google Scholar 

  7. M. Su’ait, M. Rahman, A. Ahmad, Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 115, 452–470 (2015)

    Article  Google Scholar 

  8. W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord. Chem. Rev. 248, 1363–1379 (2004)

    Article  Google Scholar 

  9. K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells–An overview. Eur. Polym. J. 66, 207–227 (2015)

    Article  Google Scholar 

  10. Q. Wali, A. Fakharuddin, R. Jose, Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges. J. Power Sources 293, 1039–1052 (2015)

    Article  Google Scholar 

  11. R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 68, 8383–8393 (2012)

    Article  Google Scholar 

  12. H.M. Upadhyaya, S. Senthilarasu, M.-H. Hsu, D.K. Kumar, Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Sol. Energy Mater. Sol. Cells 119, 291–295 (2013)

    Article  Google Scholar 

  13. J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials”. Renew. Sustain. Energy Rev. 16, 5848–5860 (2012)

    Article  Google Scholar 

  14. M.R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  15. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  16. N.A. Ludin, A.A.-A. Mahmoud, A.B. Mohamad, A.A.H. Kadhum, K. Sopian, N.S.A. Karim, Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 31, 386–396 (2014)

    Article  Google Scholar 

  17. M. Kouhnavard, S. Ikeda, N. Ludin, N.A. Khairudin, B. Ghaffari, M. Mat-Teridi et al., A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energy Rev. 37, 397–407 (2014)

    Article  Google Scholar 

  18. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin et al., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015)

    Article  Google Scholar 

  19. H.C. Weerasinghe, F. Huang, Y.-B. Cheng, Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174–189 (2013)

    Article  Google Scholar 

  20. S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.E. Moser et al., Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor–acceptor dyes. Adv. Funct. Mater. 22, 1291–1302 (2012)

    Article  Google Scholar 

  21. R. Guliani, Exact analytical analysis of dye-sensitized solar cell, improved method and comparative study. Open Renew. Energy J. 5, 49–60 (2012)

    Article  Google Scholar 

  22. S.A.A. Shah, M.H. Sayyad, F. Wahab, K.A. Khan, M.A. Munawar, H. Elbohy et al., Synthesis, modeling and photovoltaic properties of a benzothiadiazole based molecule for dye-sensitized solar cells. J. Mater. Sci. 5, 4501–4507 (2016)

    Google Scholar 

  23. S. Sarker, H.W. Seo, K.-S. Lee, Y.-K. Jin, H. Ju, D.M. Kim, Exact analytical analysis of current density–voltage curves of dye-sensitized solar cells. Sol. Energy 115, 390–395 (2015)

    Article  Google Scholar 

  24. H.H. Kyaw, T. Bora, J. Dutta, One-diode model equivalent circuit analysis for ZnO nanorod-based dye-sensitized solar cells: effects of annealing and active area. IEEE Trans. Nanotechnol. 11, 763–768 (2012)

    Article  Google Scholar 

  25. K.-I. Ishibashi, Y. Kimura, M. Niwano, An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic. J. Appl. Phys. 103, 094507 (2008)

    Article  Google Scholar 

  26. J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)

    Article  Google Scholar 

  27. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9, 847–851 (2008)

    Article  Google Scholar 

  28. G. Tsekouras, M. Miyashita, Y.K. Kho, W.Y. Teoh, A.J. Mozer, R. Amal et al., “Charge Transport in dye-sensitized solar cells based on flame-made nanoparticles”. IEEE J. Sel. Top. Quantum Electron. 16, 1641–1648 (2010)

    Article  Google Scholar 

  29. J. Carr, S. Chaudhary, On accurate capacitance characterization of organic photovoltaic cells. Appl. Phys. Lett. 100, 213902 (2012)

    Article  Google Scholar 

  30. L. Burtone, D. Ray, K. Leo, M. Riede, Impedance model of trap states for characterization of organic semiconductor devices. J. Appl. Phys. 111, 064503 (2012)

    Article  Google Scholar 

  31. J. Zhang, Y. He, X. Chen, Y. Pei, H. Yu, J. Qin et al., Study on the basic capacitance–voltage characteristics of organic molecular semiconductors. Org. Electron. 21, 73–77 (2015)

    Article  Google Scholar 

  32. S.S. Mali, C. Betty, P. Bhosale, P. Patil, Eosin-Y and N3-Dye sensitized solar cells (DSSCs) based on novel nanocoral TiO2: a comparative study. Electrochim. Acta 59, 113–120 (2012)

    Article  Google Scholar 

  33. N. Koide, A. Islam, Y. Chiba, L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol. A 182, 296–305 (2006)

    Article  Google Scholar 

  34. T. Hanmin, Z. Xiaobo, Y. Shikui, W. Xiangyan, T. Zhipeng, L. Bin et al., An improved method to estimate the equivalent circuit parameters in DSSCs. Sol. Energy 83, 715–720 (2009)

    Article  Google Scholar 

  35. C. Jiang, X. Sun, K. Tan, G. Lo, A. Kyaw, D. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 92, 143101 (2008)

    Article  Google Scholar 

  36. M. Murayama, T. Mori, Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis. Thin Solid Films 509, 123–126 (2006)

    Article  Google Scholar 

  37. M. Murayama, T. Mori, Novel tandem cell structure of dye-sensitized solar cell for improvement in photocurrent. Thin Solid Films 516, 2716–2722 (2008)

    Article  Google Scholar 

  38. U. Würfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015)

    Article  Google Scholar 

  39. I. Yahia, S. AlFaify, A.A. Al-ghamdi, H.S. Hafez, S. EL-Bashir, A. Al-Bassam et al., Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications. Appl. Phys. A 122, 1–6 (2016)

    Google Scholar 

  40. M. Samadpour, P.P. Boix, S. Giménez, A. Iraji Zad, N. Taghavinia, I. Mora-Seró et al., Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115, 14400–14407 (2011)

    Article  Google Scholar 

  41. M. Atif, W. Farooq, A. Fatehmulla, M. Aslam, S.M. Ali, Photovoltaic and Impedance spectroscopy study of screen-printed TiO2 based CdS quantum dot sensitized solar cells. Materials 8, 355–367 (2015)

    Article  Google Scholar 

  42. I. Mora-Seró, G. Garcia-Belmonte, P.P. Boix, M.A. Vázquez, J. Bisquert, Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ. Sci. 2, 678–686 (2009)

    Article  Google Scholar 

  43. D. Benetti, K.T. Dembele, J. Benavides, H. Zhao, S. Cloutier, I. Concina, et al, Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells”. J. Mater. Chem. C 4, 3555–3562 (2016)

    Article  Google Scholar 

  44. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang et al., Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888–8893 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support extended by the HEC Pakistan and US National Academy of Sciences, under the PAK-US Science and Technology Cooperation Program, Phase-V, Project number 5-530/PAK-US/HEC/2013/193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hassan Sayyad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.A.A., Sayyad, M.H., Nasr, N. et al. Photovoltaic performance and impedance spectroscopy of a purely organic dye and most common metallic dye based dye-sensitized solar cells. J Mater Sci: Mater Electron 28, 6552–6559 (2017). https://doi.org/10.1007/s10854-017-6344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6344-5

Keywords

Navigation