Skip to main content
Log in

Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report successful incorporation of graphene oxide (GO) nanosheets into poly(vinyl alcohol) (PVA) matrix by employing solution casting method. The effect of GO loadings on structural, optical and mechanical properties of PVA films was investigated. Most of the optical properties of such films are reported for the first time in the present study. On incorporating GO nanosheets into PVA matrix, the properties of nanocomposites were changed entirely. The tensile strength and Young’s modulus of nanocomposites were enhanced. Alongside, a variation in absorption edge, direct/indirect band gap, Urbach energy, refractive index, optical dielectric constant, optical conductivity and dispersion parameters were noticed. The band gap and dispersion parameters were calculated using Tauc’s and Wemple–DiDomenico models, respectively. Helpin–Tsai and mixture rule models were employed to calculate Young’s modulus. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were employed to characterize the nanocomposites films. The prepared nanocomposites might be used in designing the opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  Google Scholar 

  3. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924 (2008)

    Article  Google Scholar 

  4. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, Nano Lett. 7, 1888 (2007)

    Article  Google Scholar 

  5. H.K. Jeong, C. Yang, B.S. Kim, K.J. Kim, EPL-Europhys. Lett. 92, 37005 (2010)

    Article  Google Scholar 

  6. M. Goumri, J.W. Venturini, A. Bakour, M. Khenfouch, M. Baitoul, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  7. M. Aslam, M.A. Kalyar, Z.A. Raza, Mater. Res. Express 3, 105036 (2016)

    Article  Google Scholar 

  8. Y. Si, E.T. Samulski, Nano Lett. 8, 1679 (2008)

    Article  Google Scholar 

  9. M. Khenfouch, U. Buttner, M. Ba, Graphene 18, 2014 (2014)

    Google Scholar 

  10. N.G. Sahoo, H.K. Cheng, L. Li, S.H. Chan, Z. Judeh, J. Zhao, Adv. Funct. Mater. 19, 3962 (2009)

    Article  Google Scholar 

  11. J. Tauc, A. Menth, D.L. Wood, Phys. Rev. Lett. 25, 749 (1970)

    Article  Google Scholar 

  12. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  13. S. Elliot, The Physics and Chemistry of Solids. (Wiley, New York, 1998)

    Google Scholar 

  14. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih YM, J. Mater. Sci. Mater. Electron. 26, 5303 (2015)

    Article  Google Scholar 

  15. Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, Carbohydr. Polym. 87, 644 (2012)

    Article  Google Scholar 

  16. Y. Shi, D. Xiong, J. Li, N. Wang, J. Phys. Chem. C 120, 19442 (2016)

    Article  Google Scholar 

  17. X. Yang, L. Li, S. Shang, X.M. Tao, Polymer 51, 3431 (2010)

    Article  Google Scholar 

  18. G. Lin, B.H. Xie, J. Hu, X. Huang, G.J. Zhang, J. Nanomater. 16, 260 (2015)

    Google Scholar 

  19. M. Cano, U. Khan, T. Sainsbury, A. O’Neill, Z. Wang, I.T. McGovern, W.K. Maser, A.M. Benito, J.N. Coleman, Carbon 52, 363 (2013)

    Article  Google Scholar 

  20. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, J. Naik, D.M. Kumar, RSC Adv. 6, 77977 (2016)

    Article  Google Scholar 

  21. S. Morimune, T. Nishino, T. Goto, Polym. J. 44, 1056 (2012)

    Article  Google Scholar 

  22. M. Aslam, M.A. Kalyar, Z.A. Raza, Appl. Phys. A 123, 424 (2017)

  23. A.M. Shehap, Egypt J. Solids 31, 75 (2008)

    Google Scholar 

  24. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  25. M.M. El-Nahass, M. Dongol, M. Abou-Zied, A. El-Denglawey, Physica B 368, 179 (2005)

    Article  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  27. E. Hecht, Optics, 4th edn. (Addison-Wesley, Reading MA, 2002)

    Google Scholar 

  28. F.F. Muhammad, K. Sulaiman, Measurement 44, 1468 (2011)

    Article  Google Scholar 

  29. S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  30. J. Ma, Y. Li, X. Yin, Y. Xu, J. Yue, J. Bao, T. Zhou, RSC Adv. 6, 49448 (2016)

    Article  Google Scholar 

  31. Z. Li, R.J. Young, I.A. Kinloch, ACS Appl. Mater. Interfaces 5, 456 (2013)

    Article  Google Scholar 

  32. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  33. H.K.F. Cheng, N.G. Sahoo, Y.P. Tan, Y. Pan, H. Bao, L. Li, S.H. Chan, J. Zhao, ACS Appl. Mater. Interfaces 4, 2387 (2012)

    Article  Google Scholar 

  34. Q. Bian, H. Tian, Y. Wang, Q. Liu, X. Ge, A.V. Rajulu, A. Xiang, Polym. Sci. Ser. A 57, 836 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Kalyar, M.A. & Raza, Z.A. Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes. J Mater Sci: Mater Electron 28, 13401–13413 (2017). https://doi.org/10.1007/s10854-017-7177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7177-y

Navigation