Skip to main content
Log in

Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of different capping agents such as hexamine and PEG-400 on the synthesis of α-MoO3 nanoparticles was investigated employing a simple chemical reduction method by adopting NaBH4 as reducing agent. Owing to the general fact that the two capping agents are unique in chemical properties, different physico-chemical properties on the synthesized samples were expected. The impact of capping agents on crystallite size, structural, morphological and optical properties of the obtained product has been studied employing standard characterization techniques. X-ray diffraction analysis typically shows the formation of orthorhombic α-MoO3 nanoparticles with high crystalline nature. Raman studies also confirm the formation of α-MoO3 by exhibiting the characteristic Mo–O stretching and bending modes in the regions of 900–600 and 400–200 cm−1. PL and IR studies further ensured the formation of α-MoO3 nanoparticles. SEM image clearly revealed the nanoscale spherical morphology of synthesized α-MoO3 nanoparticles with and without capping agent. PEG-400 assisted α-MoO3 nanoparticles have demonstrated a good specific capacitance with 121 F/g as a suitable candidate for pseudo capacitance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Gao, Y.F. Xu, J. Jiang, Chem. Soc. Rev. 42, 2986 (2013)

    Article  Google Scholar 

  2. B. You, N. Jiang, M.L. Heng, Chem. Commun. 51, 4252 (2015)

    Article  Google Scholar 

  3. Y. Wang, J. Tang, B. Kong, D.S. Jia, Y.H. Wang, RSC Adv. 5, 6886 (2015)

    Article  Google Scholar 

  4. Y. Yang, H.L. Fei, G.D. Ruan, Adv. Mater. 26, 8163 (2014)

    Article  Google Scholar 

  5. Q.F. Zhang, C.M. Xu, B.A. Lu, Electrochim. Acta 132, 180 (2014)

    Article  Google Scholar 

  6. X.Z. Yu, B.A. Lu, Z. Xu, Adv. Mater. 26, 1044 (2014)

    Article  Google Scholar 

  7. R.B. Pujari, V.C. Lokhande, V.S. Kumbhar, N.R. Chodankar, C.D. Lokhand, J. Mater. Sci. 27, 3312 (2016)

    Google Scholar 

  8. K. Vijayalakshmi, A. Renitta, S.D. Jereil, K. Alagusundaram, J. Mater. Sci. 26, 9782 (2015)

    Google Scholar 

  9. X. Zhang, B. Li, X. Li, Q. Chu, M. Yang, X. Wang, H. Chen, L. Peng, X. Liu, J. Mater. Sci. 25,906 (2014)

    Google Scholar 

  10. M. Mansournia, E. Moradinia, J. Mater. Sci. 27, 82 (2016)

    Google Scholar 

  11. Y.C. Chen, FC. Zheng, Y.L. Min, T. Wang, Y.G. Zhang, Y.X. Wang, J. Mater. Sci. 23,1592 (2012)

    Google Scholar 

  12. T. Huang, M. He, Y. Zhou, W. Pan, S. Li, B. Ding, S. Huang, Y. Tong, J. Mater. Sci. (2017). doi:10.1007/s10854-017-6455-z

    Google Scholar 

  13. J. Cao, Q. Liu, D. Han, S. Yang, J. Yang, T. Wang, H. Niu, J. Mater. Sci. 26, 646 (2015)

    Google Scholar 

  14. L. Chen, Z. Song, G. Liu, J. Qiu, C. Yu, J. Qin, L. Ma, F. Tian, W. Liu, J. Phys. Chem. Solids 74, 360 (2013)

    Article  Google Scholar 

  15. D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids 73, 18 (2012)

    Article  Google Scholar 

  16. T. Khawula, K. Raju, P. Franklyn, I. Sigalas, K.I. Ozoemena, J. Mater. Chem. A 4, 6411 (2016)

    Article  Google Scholar 

  17. I. Navas, R. Vinodkumar, K.J. Lethy, A.P. Detty, V. Ganesan, V. Sathe, V.P. Mahadevan Pillai, J. Phys. D 42, 175305 (2009)

    Article  Google Scholar 

  18. S.J. Xiao, X.J. Zhao, P.P. Hu, Z.J. Chu, C.Z. Huang, L. Zhang, ACS Appl. Mater. Interfaces 8, 8184 (2016)

    Article  Google Scholar 

  19. D. Duphil, S. Bastide, C.L. Clement, J. Mater. Chem. 12, 2430 (2002)

    Article  Google Scholar 

  20. Y. Qi, W. Chen, L. Mai, Q. Zhu, A.G. Jin, Int. J. Electrochem. Sci. 1, 317 (2006)

    Google Scholar 

  21. A. Hojabri, F. Hajakbari, A.E. Meibodi, J Theor. Appl. Phys. 9, 67 (2015)

    Article  Google Scholar 

  22. H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, ACS Nano 5, 1276 (2011)

    Article  Google Scholar 

  23. Z. Li, Z. Liu, D. Li, B. Li, Q Li, Y. Huang, H. Wang, J. Mater. 26, 353 (2015)

    Google Scholar 

  24. M.Y. Ho, P.S. Khiew, D. Isa, W.S. Chiu, C.H. Chia, J. Mater. Sci. (2017). doi:10.1007/s10854-017-6391-y

    Google Scholar 

  25. K. Motevalli, Z. Zarghami, M.P. Kalamuei, J. Mater. Sci. Mater. 27, 4794 (2016)

    Article  Google Scholar 

  26. Y. Jiang, X. Leng, Z. Jia, H. Chen, H. Suo, C. Zhao, J. Mater. Sci. 26, 2995 (2015)

    Google Scholar 

  27. D. Wei, Z. Xu, J. Liang, X. Li, Y. Qian, J. Mater. Sci. 26, 6143 (2015)

    Google Scholar 

  28. M. Dieterlea, G. Mestla, Phys. Chem. Chem. Phys. 4, 822 (2002)

    Article  Google Scholar 

  29. T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Mater. Chem. Phys. 114, 687 (2009)

    Article  Google Scholar 

  30. N. Illyaskutty, S. Sreedhar, G.S. Kumar, H. Kohler, M. Schwotzer, C. Natzeck, V.P. Mahadevan Pillai, Nanoscale 6, 13882 (2014)

    Article  Google Scholar 

  31. X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, J. Phys. Chem. C 113, 21582 (2009)

    Article  Google Scholar 

  32. E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. Liu, X. Xu, Ceram. Int. 42, 2198 (2016)

    Article  Google Scholar 

  33. J. Rajeswari, P.S. Kishore, B. Viswanathan, T.K. Varadarajan, Electrochem. Commun. 11, 572 (2009)

    Article  Google Scholar 

  34. X. Li, J. Shao, J. Li, L. Zhang, Q.T. Qu, H. Zheng, J. Power Sources 237, 80 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Start-Up Research Grant No. F.30-326/2016(BSR) (2016–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, S.P., Saravanakumar, B., Ganesh, V. et al. Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications. J Mater Sci: Mater Electron 28, 13780–13786 (2017). https://doi.org/10.1007/s10854-017-7223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7223-9

Navigation