Skip to main content
Log in

Micromorphology investigation of GaAs solar cells: case study on statistical surface roughness parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this work is surface characterization of GaAs solar cell using atomic force microscopy. The surface appearance influences the optical properties of the cells. It impacts light trapping and consequently affect the efficiency of the solar cells. In case of nano-structural surface, the properties are strongly depends on its geometrical characteristics. Surface appearance was studied by atomic force microscopy (AFM). Fractal analysis was done by the triangulation method and evaluation of statistical metrics was carrying out on the basis of AFM-data, before and after heating. The results of fractal analysis show the correlation of fractal dimension and statistical characteristics of surface topography. Characterization technique and data processing methodology are essential for description of the surface condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing. J. Mater. Sci.27, 685–696 (2016)

    Google Scholar 

  2. V. Dalouji, S. Elahi, Solaymani,, A. Ghaderi, H. Elahi, Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature. Appl. Phys. A 122, 541 (2016)

    Article  Google Scholar 

  3. V. Dalouji, S. Elahi, Solaymani,, A. Ghaderi, Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures. Eur. Phys. J. Plus 131, 84 (2016)

    Article  Google Scholar 

  4. S. Solaymani, A. Ghaderi, N.B. Nezafat, Comment on: characterization of microroughness parameters in titanium nitride thin films grown by dc magnetron sputtering. J. Fusion Energy 31, 591–591 (2012)

    Article  Google Scholar 

  5. M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J Mater Sci 26, 6814–6818 (2015)

    Google Scholar 

  6. Roughness of solar cells. Available at: http://www.nanosurf.com/upload/appnote/100539_an00288_solar_cell_roughness.pdf. Accessed 31 Mar 2017

  7. M. Topič, Sever M., B. LIPOVŠEK, A. ČAMPA, J. KRČ, Approaches and challenges in optical modelling and simulation of thin-film solar cells. Sol. Energy Mater. Sol. Cells 135, 57–66 (2015)

    Article  Google Scholar 

  8. Ultrafast Laser Texturing for Enhanced Solar Cell Performance and Lower Cost. Available at: http://sionyx.com/pdf/solarcellperformancewhitepaper.pdf. Accessed 31 Mar 2017

  9. Dmitruk NL, Borkovskaya OY, Dmitruk IN, Mamontova IB, Analysis of thin film surface barrier solar cells with a microrelief interface. Sol. Energy Mater. Sol. Cells 76, 625–635 (2003)

    Article  Google Scholar 

  10. P. Škarvada, P. Tománek, P. Koktavý, R. Macků, J. Šicner, M. Vondra, D. Dallaeva, S. Smith, L. Grmela, A variety of microstructural defects in crystalline silicon solar cells. Appl. Surf. Sci. 312, 50–56 (2014)

    Article  Google Scholar 

  11. A. Khanna, P.K. Basu, A. Filipovic, V. Shanmugam, C. Schmiga, A.G. Aberle, T. Mueller, Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells. Sol. Energy Mater. Sol. Cells 132, 589–596 (2015)

    Article  Google Scholar 

  12. Q. Jiang, J. Lu, J. Zhang, Y. Yuan, H. Cai, C. Wu, R. Sun, B. Lu, X. Pan, Z. Ye, Texture surfaces and etching mechanism of ZnO:Al films by a neutral agent for solar cells. Sol. Energy Mater. Sol. Cells 130, 264–271 (2014)

    Article  Google Scholar 

  13. G. Yang, R.A. van Swaaij, H. Tan, O. Isabella, M. Zeman, Modulated surface textured glass as substrate for high efficiency microcrystalline silicon solar cells. Sol Energy Mater. Sol. Cells 133, 156–162 (2015)

    Article  Google Scholar 

  14. B. Dou, R. Jia, H. Li, C. Chen, Y. Sun, Y. Zhang, W. Ding, Y. Meng, X. Liu, T. Ye, Fabrication of ultra-small texture arrays on multicrystalline silicon surface for solar cell application. Sol. Energy 91, 145–151 (2013)

    Article  Google Scholar 

  15. X. Ren, W. Zi, Q. Ma, F. Xiao, F. Gao, S. Hu, Y. Zhou, S.F. Liu, Topology and texture controlled ZnO thin film electro deposition for superior solar cell efficiency. Sol. Energy Mater. Sol. Cells 134, 54–59 (2015)

    Article  Google Scholar 

  16. L. Ding, L. Fanni, D. Messerschmidt, S. Zabihzadeh, M.M. Masis, S. Nicolay, C. Ballif, Tailoring the surface morphology of zinc oxide films for high-performance micromorph solar cells. Sol. Energy Mater. Sol. Cells 128, 378–385 (2014)

    Article  Google Scholar 

  17. M. Erayerkan, V. Chawla, I. Repins, M.A. Scarpulla, Interplay between surface preparation and device performance in CZTSSe solar cells: effects of KCN and NH4OH etching. Sol. Energy Mater. Sol. Cells 136, 78–85 (2015)

    Article  Google Scholar 

  18. H.B.T. Li, R.H. Franken , J.K. Rath, R.E. Schropp, Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n–i–p solar cells. Sol. Energy Mater. Sol. Cells 93, 338–349 (2009)

    Article  Google Scholar 

  19. M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Modelling of thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 119, 94–111 (2013)

    Article  Google Scholar 

  20. R.F. Múgica-Vidal, F. Alba-Elías, E. Sainz-García, J. Ordieres-Meré, Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surf. Coat. Technol. 259, 374–385 (2014)

    Article  Google Scholar 

  21. I. Roppolob, N. Shahzad, A. Sacco, E. Tresso, M. Sangermano, Multifunctional NIR-reflective and self-cleaning UV-cured coating for solar cell applications based on cycloaliphatic epoxy resin. Prog. Org. Coat 77, 458–462 (2014)

    Article  Google Scholar 

  22. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, A. Boochani, S.M. Elahi, Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattices Microstruct. 93, 109–121 (2016). doi:10.1016/j.spmi.2016.03.003

    Article  Google Scholar 

  23. Ş. Ţălu,, Micro and nanoscale characterization of three dimensional surfaces. Basics and Applications., ISBN 978-606-690-349-3 (Napoca Star Publishing House, Cluj-Napoca, 2015)

    Google Scholar 

  24. D. Dallaeva, Ş. Ţălu,, S. Stach, P. Škarvada, P. Tománek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014). doi:10.1016/j.apsusc.2014.05.086

    Article  Google Scholar 

  25. S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci-Pol. 33, 175–184 (2015). doi:10.1515/msp-2015-0036

    Google Scholar 

  26. S. Ramazanov, Ş. Ţălu,, D. Sobola, S. Stach, G. Ramazanov, Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution. Superlattices Microstruct. 86, 395–402 (2015). doi:10.1016/j.spmi.2015.08.007

    Article  Google Scholar 

  27. Ş. Ţălu, S. Stach, J. Zaharieva, M. Milanova, D. Todorovsky, S. Giovanzana, Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. Int. J. Polym. Anal. Charact. 19, 404–421 (2014). doi:10.1080/1023666X.2014.904149

    Article  Google Scholar 

  28. Ş. Ţălu,, S. Stach, M. Ikram, D. Pathak, T. Wagner, J.-M. Nunzi, Surface roughness characterization of ZnO:TiO2—organic blended solar cells layers by atomic force microscopy and fractal analysis. Int. J. Nanosci. 13, 1450020–1450021 (2014). doi:10.1142/S0219581X14500203

    Article  Google Scholar 

  29. Ş. Ţălu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Ţălu, Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis. J. Mater. Sci. 25, 466–477 (2014). doi:10.1007/s10854-013-1611-6

    Google Scholar 

  30. S. Stach, Ż. Garczyk,, Ş. Ţălu,, S. Solaymani, A. Ghaderi, R. Moradian, N.B. Nezafat, S.M. Elahi, H. Gholamali, Stereometric parameters of the Cu/Fe NPs thin films. J. Phys. Chem. C 119, 17887–17898 (2015). doi:10.1021/acs.jpcc.5b04676

    Article  Google Scholar 

  31. Ş. Ţălu,, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Solaymani, H. Savaloni, R. Babaei, Micromorphology analysis of specific 3-D surface texture of silver chiral nanoflower sculptured structures. J. Ind. Eng. Chem. 43, 164–169 (2016). doi:10.1016/j.jiec.2016.08.003

    Article  Google Scholar 

  32. N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu,, M. Pourreza, S. Ghasemi, Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro-and nanoscale. RSC Adv. 7, 12923–12930 (2017). doi:10.1039/c6ra28795f

    Article  Google Scholar 

  33. Ş. Ţălu,, M. Bramowicz, S. Kulesza, A. Ghaderi, V. Dalouji, S. Solaymani, M.F. Fathi Kenari, M. Ghoranneviss, Fractal features and surface micromorphology of diamond nanocrystals. J. Microsc. 264, 143–152 (2016). doi:10.1111/jmi.12422

    Article  Google Scholar 

  34. Ş. Ţălu,, S. Solaymani, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Shahpouri, S.M. Elahi, Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J. Mater. Sci. 27, 9272–9277 (2016). doi:10.1007/s10854-016-4965-8

    Google Scholar 

  35. Ş. Ţălu,, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Adv. 6, 27228–27234 (2016). doi:10.1039/C6RA01791F

    Article  Google Scholar 

  36. A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solayani, H. Zahrabi, A. Ahmadpourian, Phys. Chem. Surf. 51, 575–578 (2015)

    Google Scholar 

  37. N. Begum, A.S. Bhatti, F. Jabeen, S. Rubini, F. MARTELLI, in Phonon Confinement Effect in III-V Nanowires, ed. by P. Prete ed. (Intech, Rijeka, 2010)), p. 258

  38. Gwyddion 2.37 software (Copyright © 2004–2007, 2009–2014 Petr Klapetek, David Nečas, Christopher Anderson). Available from: http://gwyddion.net. Accessed 10th June 2017

  39. C. Douketis, Z. Wang, T.L. Haslett, M. Moskovits, Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys. Rev. B 51, 11022–11032 (1995)

    Article  Google Scholar 

  40. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafikhani, A. Ghaderi, M. Ahmadirad, Gold nanoparticles embedded in carbon film: micromorphology analysis. J. Ind. Eng. Chem. 35, 158–166 (2016). doi:10.1016/j.jiec.2015.12.029

    Article  Google Scholar 

Download references

Acknowledgements

Research described in the paper was financially supported by Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626, by project Sensor, Information and Communication Systems SIX CZ.1.05/2.1.00/03.0072 and by the Grant Agency of the Czech Republic under no. GACR 15-05259S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Solaymani.

Ethics declarations

Conflict of interest

The authors claim to have no financial interest, either directly or indirectly, in the products or information listed in the article. The authors alone are responsible for the content and writing of the paper.

Appendix

Appendix

Statistical analysis was carried out with the software SPSS 14 for Windows (Chicago, IL, USA). One-way analysis of variance was applied for verification of results with Scheffé post-hoc tests. Statistically significant differences P are assumed to be 0.05 or less. The statistical parameters were expressed by Ra (average roughness), Rq (root-mean-square deviation), Ssk (skew), Sku (kurtosis), angles (θ, φ) (inclination).

In detail, these parameters have following meaning [38]:

  • RMS value of the height irregularities: this quantity is computed from data variance.

  • Ra value of the height irregularities: this quantity is similar to RMS value with the only difference in exponent (power) within the data variance sum. As for the RMS this exponent is q = 2, the Ra value is computed with exponent q = 1 and absolute values of the data (zero mean).

  • Height distribution skewness: computed from 3rd central moment of data values.

  • Height distribution kurtosis: computed from 4th central moment of data values.

  • Mean inclination of facets in area: computed by averaging normalized facet direction vectors.

  • Variation, which is calculated as the integral of the absolute value of the local gradient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ţălu, Ş., Nikola, P., Sobola, D. et al. Micromorphology investigation of GaAs solar cells: case study on statistical surface roughness parameters. J Mater Sci: Mater Electron 28, 15370–15379 (2017). https://doi.org/10.1007/s10854-017-7422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7422-4

Navigation