Skip to main content

Advertisement

Log in

Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Demand for new energy storage devices stimulates efforts to develop the novel and effective composites with promising properties. For this purpose, composite materials, including carbonaceous materials such as graphene, carbon nanotube and carbon fiber and metal containing compounds have attracted an increasing attention because of better electrochemical performance as compared to their single material analogs. Here, the Nanocomposite consisting of ZIF-67 nanocrystals on reduced graphene oxide nanosheets (rGO/ZIF-67) has been prepared via a simple and facile ultrasonic route at room temperature. Electrochemical properties of the rGO/ZIF-67 and ZIF-67 were measured by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy techniques in 6 M KOH as an electrolyte. The nanocomposite of rGO/ZIF-67 showed highest specific capacitance value of 210 F/g at a current density of 1 A/g which is much higher than that of ZIF-67 at a similar current density (103.6 F/g). EIS measurements exhibited lower values of internal resistance and charge transfer resistance for the composite electrode in comparison to ZIF-67 electrode, indicating that the prepared nanocomposite has higher electrical conductivity. The prepared nanocomposite showed excellent cycling performance (80% after 1000 successive cycles at a current density of 1 A/g), indicating that the ZIF-67 nanocrystals immobilized on the surface of rGO nanosheets are beneficial to improving electrochemical properties as compared to ZIF-67 single analogs and is an appropriate candidate for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  2. J.R. Miller, P. Simon, Electrochemical capacitors for energy storage management. Science 321, 651–652 (2008)

    Article  Google Scholar 

  3. P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, Ground nut seed like hydrophilic polypyrrole based thin film as a supercapacitor electrode. J. Mater. Sci. 27, 3499–3505 (2016)

    Google Scholar 

  4. Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for Supercapacitors. J. Power Sources 279, 138–145 (2015)

    Article  Google Scholar 

  5. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)

    Article  Google Scholar 

  6. M. Yu, Y. Zhang, Y. Zeng, M.S. Balogun, K. Mai, Z. Zhang, X. Lu, Y. Tong, Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 26, 4724–4729 (2014)

    Article  Google Scholar 

  7. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  8. K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014)

    Article  Google Scholar 

  9. Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2, 6086–6091 (2014)

    Article  Google Scholar 

  10. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)

    Article  Google Scholar 

  11. S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)

    Article  Google Scholar 

  12. J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H.E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408–5413 (2013)

    Article  Google Scholar 

  13. F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci. 24, 1913–1920 (2013)

    Google Scholar 

  14. S. Shahrokhian, R. Mohammadi, M.K. Amini, In–situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: application as a new high–performance supercapacitor. Electrochim. Acta 206, 317–327 (2016)

    Article  Google Scholar 

  15. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  16. F. Akbar, M. Kolahdouz, Sh.. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. E 26, 4347–4379 (2015)

    Article  Google Scholar 

  17. E. Yoo, H. Zhou, Li—air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5, 3020–3026 (2011)

    Article  Google Scholar 

  18. J. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7, 9366–9374 (2013)

    Article  Google Scholar 

  19. Zh..Sh.. Wu, G. Zhou, L.Ch.. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)

    Article  Google Scholar 

  20. H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009)

    Article  Google Scholar 

  21. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  Google Scholar 

  22. H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine. Biosens. Bioelectron. 42, 426–429 (2013)

    Article  Google Scholar 

  23. W. Zhang, Y. Tan, Y. GaoJianxiang, W. Hu, A. Stein, B. Tang, Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J. Appl. Electrochem. 46, 441–450 (2016)

    Article  Google Scholar 

  24. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2011)

    Article  Google Scholar 

  25. L. Sun, M.G. Campbell, M. Dincă, Conductive Electrically porous metal–organic frameworks. Angewandte Chemie International Edition 55, 3566–3579 (2016)

    Article  Google Scholar 

  26. Y.Zh. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6, 14354–14359 (2014)

    Article  Google Scholar 

  27. F. Wei, J. Jiang, G. Yu, Y. Sui, A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20–22 (2015)

    Article  Google Scholar 

  28. S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015)

    Article  Google Scholar 

  29. W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhou, S.B. Hartono, D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196, 4123–4127 (2011)

  30. K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014)

    Article  Google Scholar 

  31. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  32. D. Zhang, H. Shi, R. Zhang, Z. Zhang, N. Wang, J. Li, B. Yuan, H. Bai, J. Zhang, Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 72, 58772–58776 (2105)

    Google Scholar 

  33. W. Zhang, Y. Tan, Y. Gao, J. Wu, B. Tang, Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. J. Solid. State Electrochem. 19, 593–598 (2015)

    Article  Google Scholar 

  34. L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)

    Article  Google Scholar 

  35. S. Shahrokhian, R. Mohammadi, E. Asadian, One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors. Int. J. Hydrogen Energy 41, 17496–17505 (2016)

    Article  Google Scholar 

  36. C.W. Huang, H. Teng, Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. J. Electrochem. Soc. 155, A739-A744 (2008)

    Google Scholar 

  37. M. Tamaddoni Saray, H. Hosseini, Mesoporous MnNiCoO4@MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors. Electrochim. Acta 222, 505–517 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghorbani-Kalhor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinian, A., Amjad, A., Hosseinzadeh-Khanmiri, R. et al. Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. J Mater Sci: Mater Electron 28, 18040–18048 (2017). https://doi.org/10.1007/s10854-017-7747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7747-z

Navigation