Skip to main content
Log in

Electron transport within the wurtzite and zinc-blende phases of gallium nitride and indium nitride

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide energy gap semiconductors are broadly recognized as promising materials for novel electronic and opto-electronic device applications. As informed device design requires a firm grasp on the material properties of the underlying electronic materials, the electron transport that occurs within the wide energy gap semiconductors has been the focus of considerable study over the years. In an effort to provide some perspective on this rapidly evolving and burgeoning field of research, we review analyzes of the electron transport within some wide energy gap semiconductors of current interest in this paper. In order to narrow the scope of this review, we will primarily focus on the electron transport that occurs within the wurtzite and zinc-blende phases of gallium nitride and indium nitride in this review, these materials being of great current interest to the wide energy gap semiconductor community; indium nitride, while not a wide energy gap semiconductor in of itself, is included as it is often alloyed with other wide energy gap semiconductors, the resultant alloy often being a wide energy gap semiconductor itself. The electron transport that occurs within zinc-blende gallium arsenide will also be considered, albeit primarily for bench-marking purposes. Most of our discussion will focus on results obtained from our ensemble semi-classical three-valley Monte Carlo simulations of the electron transport within these materials, our results conforming with state-of-the-art wide energy gap semiconductor orthodoxy. A brief tutorial on the Monte Carlo electron transport simulation approach, this approach being used to generate the results presented herein, will also be provided. Steady-state and transient electron transport results are presented. The evolution of the field, a survey of the current literature, and some applications for the results presented herein, will also be featured. We conclude our review by presenting some recent developments on the electron transport within these materials. This review is the latest in a series of reviews that have been published on the electron transport processes that occur within the class of wide energy semiconductor materials. The results and references have been updated to include the latest developments in this rapidly evolving field of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Copyright permission was obtained from Springer)

Fig. 2

(Copyright permission was obtained from Springer)

Fig. 3

(Copyright permission was obtained from Springer)

Fig. 4

(Copyright permission was obtained from Springer)

Fig. 5

(Copyright permission was obtained from Springer)

Fig. 6

(Copyright permission was obtained from Springer)

Fig. 7

(Copyright permission was obtained from Springer)

Fig. 8
Fig. 9

(Copyright permission was obtained from Springer)

Fig. 10

(Copyright permission was obtained from Springer)

Fig. 11
Fig. 12
Fig. 13

(Copyright permission was obtained from Springer)

Fig. 14

(Copyright permission was obtained from Springer)

Fig. 15

(Copyright permission was obtained from Springer)

Fig. 16

(Copyright permission was obtained from Springer)

Fig. 17

(Copyright permission was obtained from Springer)

Fig. 18

(Copyright permission was obtained from Springer)

Fig. 19

(Copyright permission was obtained from Springer)

Fig. 20

(Copyright permission was obtained from Springer)

Fig. 21

(Copyright permission was obtained from Springer)

Fig. 22

(Copyright permission was obtained from Springer)

Fig. 23
Fig. 24
Fig. 25
Fig. 26

(Copyright permission was obtained from Springer)

Fig. 27

(Copyright permission was obtained from Springer)

Fig. 28

(Copyright permission was obtained from Springer)

Fig. 29

(Copyright permission was obtained from Springer)

Fig. 30

(Copyright permission was obtained from Springer)

Fig. 31

(Copyright permission was obtained from Springer)

Fig. 32
Fig. 33
Fig. 34

(Copyright permission was obtained from Springer)

Fig. 35

(Copyright permission was obtained from Springer)

Fig. 36

(Copyright permission was obtained from Springer)

Fig. 37
Fig. 38
Fig. 39

(Copyright permission was obtained from Springer)

Fig. 40

(Copyright permission was obtained from Springer)

Fig. 41

(Copyright permission was obtained from Springer)

Fig. 42

(Copyright permission was obtained from Springer)

Fig. 43
Fig. 44

(Copyright permission was obtained from Springer)

Fig. 45

(Copyright permission was obtained from Springer)

Fig. 46
Fig. 47
Fig. 48

Similar content being viewed by others

Notes

  1. The fact that the energy gaps associated with some ternary and quaternary alloys within the III–V nitride semiconductor group are direct and continuously tunable over this wide swath of the electromagnetic spectrum, allows, within the context of a single family of materials, for the design of opto-electronic devices that can work over this range of frequencies. More traditional semiconductor technologies, such as those based on Si and GaAs, tend to service more narrow regions of the spectrum, and thus, offer less options for opto-electronic device design.

  2. While the wurtzite phases of GaN and InN are the most common forms of these materials, zinc-blende forms of GaN and InN may also be grown [144,145,146,147,148,149,150,151,152,153]. It is now widely recognized that the zinc-blende phases of GaN and InN offer certain advantages over their wurtzite counterparts. Further details on this matter are provided later on in Sect. 4.

  3. As will be discussed later, the Monte Carlo electron transport simulation approach arrives at a solution to the Boltzmann transport equation through the use of a simulation. While the Boltzmann transport equation characterizes the electron transport through a continuum treatment of the electron ensemble, the Monte Carlo simulation approach instead provides for a corpuscular solution to the Boltzmann transport equation. If the number of electrons considered in a given Monte Carlo electron transport simulation is sufficiently large, the solutions acquired from such a simulation will approach those determined through a direct continuum solution to the Boltzmann transport equation.

  4. Structurally, these reviews are quite similar, different materials and conditions being considered, of course.

  5. Once all of the transients have been fully extinguished, the electron ensemble will have shifted into a new equilibrium state. By an equilibrium state, however, we are not necessarily referring to thermal equilibrium, thermal equilibrium only being achieved in the absence of an applied electric field.

  6. By electron drift velocity, we are referring to the average electron velocity, determined by statistically averaging over the entire electron ensemble.

  7. The ensemble Monte Carlo approach to simulating the electron transport within semiconductors has been employed by many authors. A Monte Carlo electron transport simulation resource, with source code included, may be found at https://nanohub.org/resources/moca. Further information about the Monte Carlo approach itself, beyond that found within the electron transport simulation context, may also be found at http://www.codeproject.com/Articles/767997/Parallelised-Monte-Carlo-Algorithms-sharp and http://www.codeproject.com/Articles/32654/Monte-Carlo-Simulation?q=Monte+Carlo+code

  8. Albrecht et al. [81] generalize this relationship to include a second-order non-parabolicity coefficient that reduces to the traditional Kane model, i.e., Eq. (2), in the limit that this second-order non-parabolicity coefficient reduces to zero. No dramatic impact on the results is observed.

  9. The longitudinal and transverse sound velocities are equal to

    $$\begin{aligned} \sqrt{\frac{C_{l}}{\rho }} \text { and } \sqrt{\frac{C_{t}}{\rho }}, \end{aligned}$$

    respectively, where \(C_{l}\) and \(C_{t}\) denote the respective elastic constants and \(\rho\) represents the mass density.

  10. Piezoelectric scattering is treated using the well established zinc-blende scattering rates, and thus, for the cases of the wurtzite crystal structure, a suitably transformed piezoelectric constant, \(\text {e}_{14}\), must be selected. This may be achieved through the transformation suggested by Bykhovski et al. [168, 169]. The \(\text {e}_{14}\) value selected for wurtzite GaN is that suggested by Chin et al. [103]. The \(\text {e}_{14}\) values selected for the other materials considered in this analysis are set to that corresponding to wurtzite GaN.

  11. All inter-valley deformation potentials are set to \(10^{9}\) eV/cm, following the approach of Gelmont et al. [102].

  12. We follow the approach of Bhapkar and Shur [107], and set the inter-valley phonon energies equal to the optical phonon energy, a relationship which holds approximately for the case of GaAs [73].

  13. Each conduction band band structure is modeled as possessing three distinct “valleys,” each of the valley minima (with respect to energy) corresponding to a minima in the corresponding actual conduction band structure. The valley locations are specified according to the locations of the local energy minima in the band structures, the degeneracy of each valley, the effective mass of the electrons at each valley minimum, and the non-parabolicity coefficient corresponding to each valley also being specified.

  14. For the case of direct-gap semiconductors, the \(E_{o}\) energy gap coincides with the regular energy gap, \(E_{g}\). For the case of indirect-gap semiconductors, however, the \(E_{o}\) energy gap exceeds \(E_{g}\). Adachi [172] refers to the \(E_{o}\) energy gap as the lowest direct-gap energy gap.

  15. The wide energy gap semiconductors that are available today include those based on the III–V nitrides, ZnO, silicon carbide (SiC), and a variety of other wide energy gap semiconductors. The list of references included here include devices based on this broader class of materials.

  16. Using a one-dimensional band structural evaluation for the effective mass of the electrons described using the Kane model, i.e., Eq. (2), Siddiqua et al. [154] demonstrated the important role that the non-parabolicity plays in influencing the effective mass of the electrons in a valley. The non-parabolicity associated with the lowest energy valley of the conduction band of zinc-blende InN is significantly greater than that associated with the other materials considered in this analysis, and hence, the nature of the electron transport is expected to be quite distinct. Further details are discussed by Siddiqua et al. [154].

  17. Yoder [204] defines a wide energy gap semiconductor as being that possessing an energy gap equal to 2.2 eV or wider.

  18. The earliest recorded studies into the material properties of the III–V nitride semiconductors, GaN, AlN, and InN, were performed in the 1920s, 1930s, and 1940s [50,51,52,53,54,55]. Unfortunately, the materials available at the time, small crystals and powders [3], were of poor quality. Thus, the III–V nitride semiconductor group remained of widely recognized but unrealized potential for many years. Indeed, it was only with the advent of modern deposition approaches, such as molecular beam epitaxy and metal-organic chemical vapor deposition, that the material quality exhibited by these materials approached the levels demanded of device applications. For the specific case of GaN, for example, improvements in the deposition process only started in the late 1960s; in 1969, Maruska and Tietjen [219] employed chemical vapor deposition in order to fabricate GaN. Since then, dramatic improvements in the material quality of the III–V nitride semiconductors, GaN, AlN, and InN, have been achieved. As a result, interest into the III–V nitride semiconductors, GaN, AlN, and InN, experienced a renaissance; this intense renewed interest into the III–V nitride semiconductors began in earnest in the early 1990s [3]. The work that arose as a consequence of this renewed interest is responsible for the genesis of the III–V nitride semiconductor industry that exists today. At present, GaN, AlN, and InN-based electronic and opto-electronic devices are widely available, such devices being used for a variety of commercial, industrial, and military applications [188, 220, 221].

  19. Studies into the material properties of ZnO also found their genesis in the 1920s and 1930s [222,223,224]. SiC already had a significant following by that time, it being a ubiquitous material in the production of steel by the earliest parts of the 20th Century [225, 226]. Later, by the 1930s, it was recognized as a material of interest in its own right [227, 228]. Other wide energy gap semiconductors were introduced over the span of the 20th Century.

  20. In principle, SiC can crystallize in the form of an infinite number of polytypes. Thus far, over 250 polytypes of SiC have actually been experimentally observed [229].

  21. The more common polytypes of SiC possess wide and indirect energy gaps that range between 2.2 and 3 eV [4, 253, 254]. SiC is also found to exhibit a high breakdown field strength [255, 256], an elevated thermal conductivity [257, 258], and favorable electron transport characteristics [259]. This constellation of material properties associated with the various polytypes of SiC, and the recognition of the device opportunities thus engendered, were, in large measure, responsible for igniting interest into this material in the first place.

  22. InN, while not a wide energy gap semiconductor in of itself, its room temperature energy gap only being around 0.7 eV [260], is often alloyed with the other III–V nitride semiconductors, and thus, is often considered an honorary member of the wide energy gap semiconductor family [261,262,263,264].

  23. Initial interest in the device applications of the III–V nitride semiconductors focused on GaN, the wurtzite phase of this material exhibiting a wide and direct energy gap of around 3.39 eV [219]. Wurtzite GaN also exhibits a high breakdown field strength [282, 283], elevated thermal conductivity [284, 285], and superb electron transport characteristics [120, 121, 125, 129]. These attributes make GaN ideally suited for both electronic and opto-electronic device applications [286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301].

  24. ZnO, while currently finding applications as a material for low-field thin-film transistor electron device structures [303] and as a potential material for transparent conducting electrodes [304], also possesses a direct energy gap [81, 305] with a magnitude that is very similar to that exhibited by GaN [306]. Thus, it might be expected that, with some further improvements in its material quality, ZnO may also be employed for some of the device roles currently implemented or envisaged for GaN.

  25. While every effort was made to provide a reasonable sampling of the electron transport literature corresponding to each material, some key references may have been neglected. We apologize to authors for these potential oversights.

  26. The results presented by O’Leary et al. [111] were built upon preliminary results presented previously [178].

  27. In 1986, Tansley and Foley [356] measured the spectral dependence of the optical absorption coefficient associated with wurtzite InN and determined that the energy gap associated with this material is around 1.89 eV. This value became the de facto standard for the field until 2002, when Wu et al. [260] demonstrated, using higher quality forms of wurtzite InN, that the energy gap associated with this material is actually around 0.7 eV. Other experimental measurements confirmed the narrower energy gap value suggested by Wu et al. [260, 357, 358]. This revised value for the wurtzite InN energy gap is now widely accepted by the semiconductor materials community.

  28. Thermodynamic arguments have demonstrated that wurtzite is GaN’s stable phase [381]. It is now widely recognized, however, that the zinc-blende phase of this material, which can be prepared through the careful deposition of GaN onto an appropriately selected cubic substrate, offers a number of distinct advantages over its wurtzite form. In particular, zinc-blende GaN offers higher carrier mobilities, higher carrier drift velocities, and a higher doping efficiency than its wurtzite counterpart [105, 108, 144, 145, 147, 151]. The greater symmetry inherent to the zinc-blende crystal structure leads to the absence of spontaneous polarization induced-electric fields, thereby making devices fabricated from this material less prone to failure [153, 382, 383]. The fact that zinc-blende GaN cleaves easier than its wurtzite counterpart further adds to its allure, suggesting easier device processing and hinting at opportunities for integration with Si and GaAs-based technologies [151, 153, 384]. Prodded on by some pioneering work aimed at depositing this particular form of GaN [385,386,387,388,389,390], zinc-blende GaN’s device potential has recently attracted some attention [391, 392].

  29. Thermodynamic arguments have demonstrated that wurtzite is InN’s stable phase. As a consequence, most research aimed at characterizing the material properties of InN has been concentrated on the wurtzite phase of this material. It should be noted, however, that some research into the zinc-blende phase of this material has also been performed. Initial reports into zinc-blende InN include those of Chandrasekhar et al. [148], Jenkins et al. [149], Strite et al. [265], Tabata et al. [152], and Yamamoto et al. [150]. In spite of this foundation, the material properties associated with zinc-blende InN still remain poorly understood when contrasted with our current understanding of its wurtzite counterpart.

  30. Ultimately, it is hoped that our results will advance the understanding of the nature of these semiconductors, provide researchers in the field with concepts and tools that may be drawn upon when working with III–V nitride semiconductor-based materials and devices, and equip an emerging area with a quantitative framework for the development of engineering methodologies for device design and optimization.

  31. Quantum confinement effects, and the complications they engender, must be considered in order to properly treat the nature of such a gas. Accordingly, many two-dimensional electron gas analyzes are cast within the framework of a simultaneous solution to both Schrödinger’s and Poisson’s equations. Further details on such matters are adequately addressed in the literature [428,429,430].

  32. In the fabrication of III–V nitride semiconductor-based devices, alloying is often employed. Unfortunately, owing to limitations on the scope and scale of this review article, we opted not to dedicate much of it to alloying. Further details on alloys of the III–V nitride semiconductor group are provided in the scientific literature [434, 435].

References

  1. D.K. Ferry, Phys. Rev. B 12, 2361 (1975)

    Article  Google Scholar 

  2. P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976)

    Article  Google Scholar 

  3. S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)

    Article  Google Scholar 

  4. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)

    Article  Google Scholar 

  5. S.N. Mohammad, H. Morkoç, Prog. Quantum Electron. 20, 361 (1996)

    Article  Google Scholar 

  6. S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999)

    Article  Google Scholar 

  7. S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000)

    Article  Google Scholar 

  8. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001)

    Google Scholar 

  9. A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94, 2779 (2003)

    Article  Google Scholar 

  10. M.S. Shur, R.F. Davis (eds.), GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, River Edge, 2004)

    Google Scholar 

  11. J. Wu, J. Appl. Phys. 106, 011101 (2009)

    Article  Google Scholar 

  12. S.J. Pearton, C.R. Abernathy, F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, New York, 2010)

    Google Scholar 

  13. E.A. Jones, F. Wang, D. Costinett, IEEE J. Emerg. Sel. Topics Power Electron. 4, 707 (2016)

    Article  Google Scholar 

  14. G. Meneghesso, M. Meneghini, I. Rossetto, D. Bisi, S. Stoffels, M. Van Hove, S. Decoutere, E. Zanoni, Semicond. Sci. Technol. 31, 093004 (2016)

    Article  Google Scholar 

  15. N. Otsuka, S. Nagai, H. Ishida, Y. Uemoto, T. Ueda, T. Tanaka, D. Ueda, ECS Trans. 41, 51 (2011)

    Article  Google Scholar 

  16. J.L. Hudgins, R.W. de Doncker, IEEE Ind. Appl. Mag. 18, 18 (2012)

    Article  Google Scholar 

  17. A. Dobrinsky, G. Simin, R. Gaska, M. Shur, ECS Trans. 58, 129 (2013)

    Article  Google Scholar 

  18. M.H. Wong, S. Keller, Nidhi, S. Dasgupta, D.J. Denninghoff, S. Kolluri, D.F. Brown, J. Lu, N.A. Fichtenbaum, E. Ahmadi, U. Singisetti, A. Chini, S. Rajan, S.P. DenBaars, J.S. Speck, U.K. Mishra, Semicond. Sci. Technol. 28, 074009 (2013)

    Article  Google Scholar 

  19. S. Faramehr, K. Kalna, P. Igić, Semicond. Sci. Technol. 29, 115020 (2014)

    Article  Google Scholar 

  20. P. Fay, Y. Xie, Y. Zhao, Z. Jiang, S. Rahman, H. Xing, B. Sensale-Rodriguez, L. Liu, Proc. SPIE 9199, 91990L (2014)

    Article  Google Scholar 

  21. J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)

    Article  Google Scholar 

  22. T. Ueda, M. Ishida, T. Tanaka, D. Ueda, Jpn. J. Appl. Phys. 53, 100214 (2014)

    Article  Google Scholar 

  23. B.K. Jebalin, A.S. Rekh, P. Prajoon, D. Godwinraj, N.M. Kumar, D. Nirmal, Superlattices Microstruct. 78, 210 (2015)

    Article  Google Scholar 

  24. F.A. Maier, D. Krausse, D. Gruner, R. Reiner, P. Waltereit, R. Quay, O. Ambacher, in IEEE Compound Semiconductor Integrated Circuit Symposium (2016), p. 1

  25. M. Kuzuhara, J.T. Asubar, H. Tokuda, Jpn. J. Appl. Phys. 55, 070101 (2016)

    Article  Google Scholar 

  26. Y.-S. Park, Proc. SPIE 4413, 282 (2001)

    Article  Google Scholar 

  27. M. Yang, B. Chang, G. Hao, H. Wang, M. Wang, Optik 126, 3357 (2015)

    Article  Google Scholar 

  28. M.S. Shur, M.A. Khan, Proc. SPIE 2397, 294 (1995)

    Article  Google Scholar 

  29. M.A. Khan, M.S. Shur, Q. Chen, Electron. Lett. 31, 2130 (1995)

    Article  Google Scholar 

  30. J.A. McDonald, R. Szweda, Ill-Vs Rev. 10, 18 (1997)

    Google Scholar 

  31. S. Nakamura, Proc. SPIE 3283, 2 (1998)

    Article  Google Scholar 

  32. J. Piprek, R.K. Sink, M.A. Hansen, J.E. Bowers, S.P. DenBaars, Proc. SPIE 3944, 28 (2000)

    Article  Google Scholar 

  33. N. Stath, V. Härle, J. Wagner, Mater. Sci. Eng. B 80, 224 (2001)

    Article  Google Scholar 

  34. R. Szweda, Ill-Vs Rev. 15, 40 (2002)

    Google Scholar 

  35. M. Meneghini, L.-R. Trevisanello, G. Meneghesso, E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 323 (2008)

    Article  Google Scholar 

  36. M.P. Ulmer, Proc. SPIE 7222, 722210 (2009)

    Article  Google Scholar 

  37. S. Mokkapati, C. Jagadish, Mater. Today 12, 22 (2009)

    Article  Google Scholar 

  38. N. Trivellin, M. Meneghini, E. Zanoni, K. Orita, M. Yuri, T. Tanaka, D. Ueda, G. Meneghesso, in IEEE International Reliability Physics Symposium Proceedings (2010), p. 1

  39. M. Beeler, E. Trichas, E. Monroy, Semicond. Sci. Technol. 28, 074022 (2013)

    Article  Google Scholar 

  40. V. Fellmann, P. Jaffrennou, D. Sam-Giao, B. Gayral, K. Lorenz, E. Alves, B. Daudin, Jpn. J. Appl. Phys. 50, 031001 (2011)

    Article  Google Scholar 

  41. K. Kusakabe, D. Imai, K. Wang, A. Yoshikawa, Phys. Status Solidi C 13, 205 (2016)

    Article  Google Scholar 

  42. J. Li, K.B. Nam, K.H. Kim, T.N. Oder, H.J. Jun, J.Y. Lin, H.X. Jiang, Proc. SPIE 4280, 27 (2001)

    Article  Google Scholar 

  43. F. Wang, S.-S. Li, J.-B. Xia, H.X. Jiang, J.Y. Lin, J. Li, S.-H. Wei, Appl. Phys. Lett. 91, 061125 (2007)

    Article  Google Scholar 

  44. S.Y. Hu, Y.C. Lee, Z.C. Feng, Y.H. Weng, J. Appl. Phys. 112, 063111 (2012)

    Article  Google Scholar 

  45. S. Nakamura, Proc. SPIE 2994, 2 (1997)

    Article  Google Scholar 

  46. D.A. Gaul, W.S. Rees Jr., Adv. Mater. 12, 935 (2000)

    Article  Google Scholar 

  47. T.D. Moustakas, ECS Trans. 41, 3 (2011)

    Article  Google Scholar 

  48. S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013)

    Article  Google Scholar 

  49. M.D. Smith, D. O’Mahony, F. Vitobello, M. Muschitiello, A. Costantino, A.R. Barnes, P.J. Parbrook, Semicond. Sci. Technol. 31, 025008 (2016)

    Article  Google Scholar 

  50. H. Ott, Zeitschr. Physik 22, 201 (1924)

    Article  Google Scholar 

  51. H.J. Krase, J.G. Thompson, J.Y. Yee, Ind. Engg. Chem. 18, 1287 (1926)

    Article  Google Scholar 

  52. E. Tiede, M. Thimann, K. Sensse, Chem. Berichte 61, 1568 (1928)

    Article  Google Scholar 

  53. W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932)

    Article  Google Scholar 

  54. R. Juza, H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 239, 282 (1938)

    Article  Google Scholar 

  55. H. Hahn, R. Juza, Zeitschr. Anorgan. Allgem. Chem. 244, 111 (1940)

    Article  Google Scholar 

  56. M.A.L. Johnson, N.A. El-Masry Jr., J.W. Cook Jr., J.F. Schetzina, Mater. Sci. Forum 264–268, 1161 (1998)

    Article  Google Scholar 

  57. S. Keller, Y.-F. Wu, G. Parish, N. Ziang, J.J. Xu, B.P. Keller, S.P. DenBaars, U.K. Mishra, IEEE Trans. Electron Devices 48, 552 (2001)

    Article  Google Scholar 

  58. F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012)

    Article  Google Scholar 

  59. T.J. Flack, B.N. Pushpakaran, S.B. Bayne, J. Electron. Mater. 45, 2673 (2016)

    Article  Google Scholar 

  60. R.J. Trew, J.-B. Yan, P.M. Mock, Proc. IEEE 79, 598 (1991)

    Article  Google Scholar 

  61. J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.E. Oakley, IEEE Trans. Nucl. Sci. 39, 1974 (1992)

    Article  Google Scholar 

  62. P.L. Dreike, D.M. Fleetwood, D.B. King, D.C. Sprauer, T.E. Zipperian, IEEE Trans. Compon. Packag. Manuf. Technol. A 17, 594 (1994)

    Article  Google Scholar 

  63. J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)

    Article  Google Scholar 

  64. J.C. Zolper, IEDM 1999, 389 (1999)

    Google Scholar 

  65. J. Millán, IET Circuits Devices Syst. 1, 372 (2007)

    Article  Google Scholar 

  66. V.V. Buniatyan, V.M. Aroutiounian, J. Phys D.: Appl. Phys. 40, 6355 (2007)

    Article  Google Scholar 

  67. R.N. Bhargava, IEEE Trans. Electron Devices 22, 691 (1975)

    Article  Google Scholar 

  68. A.V. Nurmikko, R.L. Gunshor, IEEE J. Quantum Electron. 30, 619 (1994)

    Article  Google Scholar 

  69. T. Matsuoka, A. Ohki, T. Ohno, Y. Kawaguchi, J. Cryst. Growth 138, 727 (1994)

    Article  Google Scholar 

  70. M.A. Khan, M.S. Shur, Proc. SPIE 3006, 154 (1997)

    Article  Google Scholar 

  71. J. Han, H. Amano, L. Schowalter, Semicond. Sci. Technol. 29, 080301 (2014)

    Article  Google Scholar 

  72. W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)

    Article  Google Scholar 

  73. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, J. Appl. Phys. 48, 4587 (1977)

    Article  Google Scholar 

  74. B.R. Nag, Electron Transport in Compound Semiconductors (Springer-Verlag, Berlin, 1980)

    Book  Google Scholar 

  75. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Article  Google Scholar 

  76. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag, New York, 1989)

    Book  Google Scholar 

  77. B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Oxford, New York, 1993)

    Google Scholar 

  78. G.U. Jensen, B. Lund, T.A. Fjeldly, M. Shur, Comput. Phys. Commun. 67, 1 (1991)

    Article  Google Scholar 

  79. I.A. Khan, J.A. Cooper Jr., Mater. Sci. Forum 264–268, 509 (1998)

    Article  Google Scholar 

  80. R. Mickevic̆ius, J.H. Zhao, Mater. Sci. Forum 264–268, 291 (1998)

    Article  Google Scholar 

  81. J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)

    Article  Google Scholar 

  82. V. Gruzinskis, Y. Luo, J. Zhao, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Mater. Sci. Forum 338–342, 1379 (2000)

    Article  Google Scholar 

  83. J.H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Semicond. Sci. Technol. 15, 1093 (2000)

    Article  Google Scholar 

  84. M. Hjelm, K. Bertilsson, H.-E. Nilsson, Appl. Surf. Sci. 184, 194 (2001)

    Article  Google Scholar 

  85. H.-E. Nilsson, E. Bellotti, M. Hjelm, K. Brennan, Math. Comput. Sim. 55, 199 (2001)

    Article  Google Scholar 

  86. M. Hjelm, H.-E. Nilsson, A. Martinez, K.F. Brennan, E. Bellotti, J. Appl. Phys. 93, 1099 (2003)

    Article  Google Scholar 

  87. H.-E. Nilsson, U. Englund, M. Hjelm, E. Bellotti, K. Brennan, J. Appl. Phys. 93, 3389 (2003)

    Article  Google Scholar 

  88. B. Guo, U. Ravaioli, M. Staedele, Comput. Phys. Commun. 175, 482 (2006)

    Article  Google Scholar 

  89. F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)

    Article  Google Scholar 

  90. Z. Yarar, Phys. Status Solidi B 244, 3711 (2007)

    Article  Google Scholar 

  91. E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008)

    Article  Google Scholar 

  92. F. Bertazzi, E. Bellotti, E. Furno, M. Goano, J. Electron. Mater. 38, 1677 (2009)

    Article  Google Scholar 

  93. F. Bertazzi, M. Penna, M. Goano, E. Bellotti, Proc. SPIE 7603, 760303 (2010)

    Article  Google Scholar 

  94. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)

    Article  Google Scholar 

  95. W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)

    Article  Google Scholar 

  96. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)

    Article  Google Scholar 

  97. E. Baghani, S.K. O’Leary, J. Appl. Phys. 114, 023703 (2013)

    Article  Google Scholar 

  98. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013)

    Google Scholar 

  99. W. A. Hadi, E. Baghani, M. S. Shur, S. K. O’Leary, Mater. Res. Soc. Symp. Proc. 1674 (2014). https://doi.org/10.1557/opl.2014.479

  100. J. Woźny, Z. Lisik, J. Podgórski, J. Phys. Conf. Series 494, 012005 (2014)

    Article  Google Scholar 

  101. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)

    Article  Google Scholar 

  102. B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)

    Article  Google Scholar 

  103. V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)

    Article  Google Scholar 

  104. N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)

    Article  Google Scholar 

  105. J. Kolník, İ.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)

    Article  Google Scholar 

  106. M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)

    Article  Google Scholar 

  107. U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)

    Article  Google Scholar 

  108. B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)

    Article  Google Scholar 

  109. E.G. Brazel, M.A. Chin, V. Narayanamurti, D. Kapolnek, E.J. Tarsa, S.P. DenBaars, Appl. Phys. Lett. 70, 330 (1997)

    Article  Google Scholar 

  110. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)

    Article  Google Scholar 

  111. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)

    Article  Google Scholar 

  112. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)

    Article  Google Scholar 

  113. M.S. Krishnan, N. Goldsman, A. Christou, J. Appl. Phys. 83, 5896 (1998)

    Article  Google Scholar 

  114. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Article  Google Scholar 

  115. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)

    Article  Google Scholar 

  116. J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, K.F. Brennan, Mater. Res. Soc. Symp. Proc. 482, 815 (1998)

    Article  Google Scholar 

  117. R. Oberhuber, G. Zandler, P. Vogl, Appl. Phys. Lett. 73, 818 (1998)

    Article  Google Scholar 

  118. N.A. Zakhleniuk, C.R. Bennett, B.K. Ridley, M. Babiker, Appl. Phys. Lett. 73, 2485 (1998)

    Article  Google Scholar 

  119. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 572, 445 (1999)

    Article  Google Scholar 

  120. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)

    Article  Google Scholar 

  121. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)

    Article  Google Scholar 

  122. N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter. 14, 3457 (2002)

    Google Scholar 

  123. E. Bellotti, Proc. SPIE 4986, 589 (2003)

    Article  Google Scholar 

  124. S. Gokden, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 18, 206 (2003)

    Article  Google Scholar 

  125. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)

    Article  Google Scholar 

  126. S. Gökden, Phys. E 23, 198 (2004)

    Article  Google Scholar 

  127. B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)

    Article  Google Scholar 

  128. S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Phys. Status Solidi C 3, 2350 (2006)

    Article  Google Scholar 

  129. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)

    Google Scholar 

  130. C.H. Oxley, M.J. Uren, A. Coates, D.G. Hayes, IEEE Trans. Electron Devices 53, 565 (2006)

    Article  Google Scholar 

  131. B. Benbakhti, M. Rousseau, A. Soltani, J.-C. De Jaeger, IEEE Trans. Electron Devices 53, 2237 (2006)

    Article  Google Scholar 

  132. Y. Tomita, H. Ikegami, H.I. Fujishiro, Phys. Status Solidi C 4, 2695 (2007)

    Article  Google Scholar 

  133. M. Ramonas, A. Matulionis, L.F. Eastman, Semicond. Sci. Technol. 22, 875 (2007)

    Article  Google Scholar 

  134. J. Khurgin, Y.J. Ding, D. Jena, Appl. Phys. Lett. 91, 252104 (2007)

    Article  Google Scholar 

  135. S. Yamakawa, M. Saraniti, S.M. Goodnick, Proc. SPIE 6471, 64710M (2007)

    Article  Google Scholar 

  136. A. Matulionis, J. Liberis, E. Šermukšnis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008)

    Article  Google Scholar 

  137. A. Hamdoune, N.-E.C. Sari, Phys. Procedia 2, 905 (2009)

    Article  Google Scholar 

  138. H. Arabshahi, M.R. Rokn-Abadi, F.B. Bagh-Siyahi, Res. J. Appl. Sci. 5, 215 (2010)

    Google Scholar 

  139. W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012)

    Article  Google Scholar 

  140. W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013)

    Article  Google Scholar 

  141. S. Shishehchi, F. Bertazzi, E. Bellotti, Proc. SPIE 8619, 86190H (2013)

    Article  Google Scholar 

  142. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 4675 (2014)

    Google Scholar 

  143. P. Siddiqua, W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 26, 4475 (2015)

    Google Scholar 

  144. T. Lei, T.D. Moustakas, R.J. Graham, Y. He, S.J. Berkowitz, J. Appl. Phys. 71, 4933 (1992)

    Article  Google Scholar 

  145. Z. Sitar, M.J. Paisley, J. Ruan, J.W. Choyke, R.F. Davis, J. Mater. Sci. Lett. 11, 261 (1992)

    Article  Google Scholar 

  146. S. Strite, D. Chandrasekhar, D.J. Smith, J. Sariel, H. Chen, N. Teraguchi, H. Morkoç, J. Cryst. Growth 127, 204 (1993)

    Article  Google Scholar 

  147. G. Ramírez-Flores, H. Navarro-Contreras, A. Lastras-Martínez, R.C. Powell, J.E. Greene, Phys. Rev. B 50, 8433 (1994)

    Article  Google Scholar 

  148. D. Chandrasekhar, D.J. Smith, S. Strite, M.E. Lin, H. Morkoç, J. Cryst. Growth 152, 135 (1995)

    Article  Google Scholar 

  149. L.C. Jenkins, T.S. Cheng, C.T. Foxon, S.E. Hooper, J.W. Orton, S.V. Novikov, V.V. Tret’yakov, J. Vac. Sci. Technol. B 13, 1585 (1995)

    Article  Google Scholar 

  150. A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, J. Cryst. Growth 174, 641 (1997)

    Article  Google Scholar 

  151. K.H. Ploog, 0. Brandt, B. Yang, H. Yang, A. Trampert, Proc. SPIE 3283, 20 (1998)

    Article  Google Scholar 

  152. A. Tabata, A.P. Lima, L.K. Teles, L.M.R. Scolfaro, J.R. Leite, V. Lemos, B. Schöttker, T. Frey, D. Schikora, K. Lischka, Appl. Phys. Lett. 74, 362 (1999)

    Article  Google Scholar 

  153. S.V. Novikov, C.T. Foxon, A.J. Kent, Phys. Status Solidi A 207, 1277 (2010)

    Article  Google Scholar 

  154. P. Siddiqua, W.A. Hadi, A.K. Salhotra, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 117, 125705 (2015)

    Article  Google Scholar 

  155. P. Siddiqua, S.K. O’Leary, J. Appl. Phys. 119, 095104 (2016)

    Article  Google Scholar 

  156. P. Siddiqua, S.K. O’Leary, J. Appl. Phys. 120, 095701 (2016)

    Article  Google Scholar 

  157. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990)

    Google Scholar 

  158. U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008)

    Google Scholar 

  159. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  160. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  161. D.C. Look, J.R. Sizelove, S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars, Solid State Commun. 102, 297 (1997)

    Article  Google Scholar 

  162. E.M. Conwell, M.O. Vassell, IEEE Trans. Electron Devices 13, 22 (1966)

    Article  Google Scholar 

  163. P.A. Sandborn, A. Rao, P.A. Blakey, IEEE Trans. Electron Devices 36, 1244 (1989)

    Article  Google Scholar 

  164. S. Zukotynski, W. Howlett, Solid-State Electron. 21, 35 (1978)

    Article  Google Scholar 

  165. D.K. Ferry, C. Jacoboni (eds.), Quantum Transport in Semiconductors (Plenum Press, New York, 1992)

    Google Scholar 

  166. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

  167. R.M. Yorston, J. Comput. Phys. 64, 177 (1986)

    Article  Google Scholar 

  168. A. Bykhovski, B. Gelmont, M. Shur, A. Khan, J. Appl. Phys. 77, 1616 (1995)

    Article  Google Scholar 

  169. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Appl. Phys. Lett. 68, 818 (1996)

    Article  Google Scholar 

  170. W. R. L. Lambrecht, B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, Edited by J. H. Edgar (Inspec, London, 1994), Chapter 4

  171. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Article  Google Scholar 

  172. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2005)

    Book  Google Scholar 

  173. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  174. M. Shur, S. Rumyantsev, M. Levinshtein (eds.), SiC Materials and Devices, vol. 1 (World Scientific, London, 2006)

    Google Scholar 

  175. P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)

    Article  Google Scholar 

  176. K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004)

    Book  Google Scholar 

  177. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 821 (1998)

    Article  Google Scholar 

  178. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998)

    Article  Google Scholar 

  179. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 512, 555 (1998)

    Article  Google Scholar 

  180. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)

    Article  Google Scholar 

  181. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)

    Article  Google Scholar 

  182. W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013)

    Google Scholar 

  183. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013)

    Google Scholar 

  184. A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. de Jaeger, B. Giordanengo, M. Richter, F. Scholze, J.F. Hochedez, Diamond Relat. Mater. 18, 860 (2009)

    Article  Google Scholar 

  185. D.K. Schroder, Int. J. High Speed Electron. Syst. 21, 1250009 (2012)

    Article  Google Scholar 

  186. H. Jain, S. Rajawat, P. Agrawal, in Proceedings of IEEE International Conference on Microwave (2008), p. 878

  187. H. Morkoç, Proc. IEEE 98, 1113 (2010)

    Article  Google Scholar 

  188. S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)

    Article  Google Scholar 

  189. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)

    Article  Google Scholar 

  190. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)

    Article  Google Scholar 

  191. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010)

    Article  Google Scholar 

  192. L. Sang, M. Liao, M. Sumiya, Sensors 13, 10482 (2013)

    Article  Google Scholar 

  193. F. Roccaforte, P. Fiorenza, G. Greco, R.L. Nigro, F. Giannazzo, A. Patti, M. Saggio, Phys. Status Solidi A 211, 2063 (2014)

    Article  Google Scholar 

  194. E.P. Carlson, I.C. Kizilyalli, T.D. Heidel, D.W. Cunningham, ECS Trans. 75, 3 (2016)

    Article  Google Scholar 

  195. X. Zhao, L. Zhou, Y. Jiang, R. Cui, Y. Li, Y. Zheng, J. Zuo, H. Zhang, Organ. Electron. 37, 85 (2016)

    Article  Google Scholar 

  196. R.J. Kaplar, A.A. Allerman, A.M. Armstrong, M.H. Crawford, J.R. Dickerson, A.J. Fischer, A.G. Baca, E.A. Douglas, ECS J. Solid State Sci. Technol. 6, Q3061 (2017)

    Article  Google Scholar 

  197. D. Maier, M. Alomari, N. Grandjean, J.-F. Carlin, M.-A. di Forte-Poisson, C. Dua, A. Chuvilin, D. Troadec, C. Gaquière, U. Kaiser, S.L. Delage, E. Kohn, IEEE Trans. Device Mater. Reliab. 10, 427 (2010)

    Article  Google Scholar 

  198. J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)

    Article  Google Scholar 

  199. M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)

    Article  Google Scholar 

  200. M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985)

    Article  Google Scholar 

  201. A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers, R.H. Koch, Phys. Rev. Lett. 62, 1776 (1989)

    Article  Google Scholar 

  202. A. Palevski, C.P. Umbach, M. Heiblum, Appl. Phys. Lett. 55, 1421 (1989)

    Article  Google Scholar 

  203. A. Yacoby, U. Sivan, C.P. Umbach, J.M. Hong, Phys. Rev. Lett. 66, 1938 (1991)

    Article  Google Scholar 

  204. M.N. Yoder, IEEE Trans. Electron Devices 43, 1633 (1996)

    Article  Google Scholar 

  205. D. Jones, A.H. Lettington, Solid State Commun. 11, 701 (1972)

    Article  Google Scholar 

  206. B.J. Baliga, IEEE Electron Device Lett. 10, 455 (1989)

    Article  Google Scholar 

  207. M. Bhatnagar, B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993)

    Article  Google Scholar 

  208. T.P. Chow, R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994)

    Article  Google Scholar 

  209. J. W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, St. G. Müller, J. W. Palmour, in Proc. 2007 IEEE Radar Conf., 960 (2007)

  210. M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000)

    Article  Google Scholar 

  211. M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 79, 1303 (2001)

    Article  Google Scholar 

  212. M. Wraback, H. Shen, S. Rudin, Proc. SPIE 4646, 117 (2002)

    Article  Google Scholar 

  213. E.O. Johnson, Proc. IEEE Int. Conv. Record 13, 27 (1965)

  214. E.O. Johnson, RCA Rev. 26, 163 (1965)

    Google Scholar 

  215. R.W. Keyes, Proc. IEEE 60, 225 (1972)

    Article  Google Scholar 

  216. J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003)

    Article  Google Scholar 

  217. L.-M. Wang, in Proc. IEEE 25th International Conference on Microelectronics (2006), p. 615

  218. D. Shaddock, L. Meyer, J. Tucker, S. Dasgupta, R. Fillion, P. Bronecke, L. Yorinks, P. Kraft, in Proceedings of the 19th IEEE Semi.-Therm. Symposium (2003), p. 42

  219. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  Google Scholar 

  220. T. Kachi, IEICE Electron. Express 10, 1 (2013)

    Article  Google Scholar 

  221. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Book  Google Scholar 

  222. G.S. Parks, C.E. Hablutzel, L.E. Webster, J. Am. Chem. Soc. 49, 2792 (1927)

    Article  Google Scholar 

  223. G.I. Finch, H. Wilman, J. Chem. Soc. (1934). https://doi.org/10.1039/JR9340000751

  224. V.E. Cosslett, Nature 136, 988 (1935)

    Article  Google Scholar 

  225. F.J. Tone, Iron Age (1899)

  226. J.G. Fitz, A. Francis, Met. Chem. Eng. (1912)

  227. H.E. White, J. Am. Ceram. Soc. 12, 252 (1933)

    Google Scholar 

  228. N.W. Thibault, Am. Mineral. 29, 327 (1944)

    Google Scholar 

  229. A.L. Ortiz, F. Sánchez-Bajo, F.L. Cumbrera, F. Guiberteau, J. Appl. Cryst. 46, 242 (2013)

    Article  Google Scholar 

  230. Y. Kondo, T. Takahashi, K. Ishii, Y. Hayashi, E. Sakuma, S. Misawa, H. Daimon, M. Yamanaka, S. Yoshida, IEEE Electron Device Lett. 7, 404 (1986)

    Article  Google Scholar 

  231. J.W. Palmour, H.S. Kong, R.F. Davis, Appl. Phys. Lett. 51, 2028 (1987)

    Article  Google Scholar 

  232. T. Nakamura, K. Nanbu, T. Ishikawa, K. Kondo, J. Appl. Phys. 64, 2164 (1988)

    Article  Google Scholar 

  233. G. Kelner, M.S. Shur, S. Binari, K.J. Sleger, H.-S. Kong, Trans. Electron Device 36, 1045 (1989)

    Article  Google Scholar 

  234. R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Proc. IEEE 79, 677 (1991)

    Article  Google Scholar 

  235. J.-W. Hong, N.-F. Shin, T.-S. Jen, S.-L. Ning, C.-Y. Chang, IEEE Electron Device Lett. 13, 375 (1992)

    Article  Google Scholar 

  236. M. Bhatnagar, P.K. McLarty, B.J. Baliga, IEEE Electron Device Lett. 13, 501 (1992)

    Article  Google Scholar 

  237. M. Ghezzo, D.M. Brown, E. Downey, J. Kretchmer, W. Hennessy, D.L. Polla, H. Bakhru, IEEE Electron Device Lett. 13, 639 (1992)

    Article  Google Scholar 

  238. D.M. Brown, E.T. Downey, M. Ghezzo, J.W. Kretchmer, R.J. Saia, Y.S. Liu, J.A. Edmond, G. Gati, J.M. Pimbley, W.E. Schneider, IEEE Trans. Electron Devices 40, 325 (1993)

    Article  Google Scholar 

  239. P.G. Neudeck, D.J. Larkin, J.E. Starr, J.A. Powell, C.S. Salupo, L.G. Matus, IEEE Electron Device Lett. 14, 136 (1993)

    Article  Google Scholar 

  240. G.-B. Gao, J. Sterner, H. Morkoç, IEEE Trans. Electron Devices 41, 1092 (1994)

    Article  Google Scholar 

  241. D.M. Brown, E. Downey, M. Ghezzo, J. Kretchmer, V. Krishnamurthy, W. Hennessy, G. Michon, Solid-State Electron. 39, 1531 (1996)

    Article  Google Scholar 

  242. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Proc. IEEE 86, 1594 (1998)

    Article  Google Scholar 

  243. J.C. Zolper, Solid-State Electron. 42, 2153 (1998)

    Article  Google Scholar 

  244. T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R.J. Gutmann, Solid-State Electron. 44, 277 (2000)

    Article  Google Scholar 

  245. A. Elasser, T.P. Chow, Proc. IEEE 90, 969 (2002)

    Article  Google Scholar 

  246. F. Ren, J.C. Zolper (eds.), Wide Energy Bandgap Electronic Devices (World Scientific, River Edge, 2003)

    Google Scholar 

  247. J.H. Zhao, Mater. Res. Soc. Bull. 30, 293 (2005)

    Article  Google Scholar 

  248. Q. Zhang, R. Callanan, M.K. Das, S.-H. Ryu, A.K. Agarwal, J.W. Palmour, IEEE Trans. Power Electron. 25, 2889 (2010)

    Article  Google Scholar 

  249. K. Schirmer, B. Rowden, H.A. Mantooth, S.S. Ang, J.C. Balda, ECS Trans. 41, 183 (2011)

    Article  Google Scholar 

  250. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Microw. Theory Techniq. 60, 1764 (2012)

    Article  Google Scholar 

  251. L. Lanni, R. Ghandi, B.G. Malm, C.-M. Zetterling, M. Östling, IEEE Trans. Electron. Devices 59, 1076 (2012)

    Article  Google Scholar 

  252. H.A. Mantooth, M.D. Glover, P. Shepherd, IEEE J. Emerg. Sel. Topics Power Electron. 2, 374 (2014)

    Article  Google Scholar 

  253. H.R. Philipp, Phys. Rev. 111, 440 (1958)

    Article  Google Scholar 

  254. V. Grivickas, J. Linnros, P. Grivickas, A. Galeckas, Mater. Sci. Eng. B 61–62, 197 (1999)

    Article  Google Scholar 

  255. S. Nakamura, H. Kumagai, T. Kimoto, H. Matsunami, Appl. Phys. Lett. 80, 3355 (2002)

    Article  Google Scholar 

  256. W. Bartsch, R. Schoerner, K.O. Dohnke, Mater. Sci. Forum 645–648, 909 (2010)

    Article  Google Scholar 

  257. E.A. Burgemeister, W. von Muench, E. Pettenpaul, J. Appl. Phys. 50, 5790 (1979)

    Article  Google Scholar 

  258. D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, W.J. Choyke, J. Cryst. Growth 109, 17 (1991)

    Article  Google Scholar 

  259. R. Mickevic̆ius, J.H. Zhao, J. Appl. Phys. 83, 3161 (1998)

    Article  Google Scholar 

  260. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)

    Article  Google Scholar 

  261. S.X. Li, J. Wu, E.E. Haller, W. Walukiewicz, W. Shan, H. Lu, W.J. Schaff, Appl. Phys. Lett. 83, 4963 (2003)

    Article  Google Scholar 

  262. W. Walukiewicz, Physica E 20, 300 (2004)

    Article  Google Scholar 

  263. K. Bejtka, F. Rizzi, P.R. Edwards, R.W. Martin, E. Gu, M.D. Dawson, I.M. Watson, I.R. Sellers, F. Semond, Phys. Status Solidi A 202, 2648 (2005)

    Article  Google Scholar 

  264. I. Gorczyca, T. Suski, N.E. Christensen, A. Svane, Appl. Phys. Lett. 96, 101907 (2010)

    Article  Google Scholar 

  265. S. Strite, M.E. Lin, H. Morkoç, Thin Solid Films 231, 197 (1993)

    Article  Google Scholar 

  266. I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, K. Manabe, J. Cryst. Growth 128, 379 (1993)

    Article  Google Scholar 

  267. S.N. Mohammad, A.A. Salvador, H. Morkoç, Proc. IEEE 83, 1306 (1995)

    Article  Google Scholar 

  268. S. Porowski, J. Cryst. Growth 166, 583 (1996)

    Article  Google Scholar 

  269. S.P. Denbaars, Proc. IEEE 85, 1740 (1997)

    Article  Google Scholar 

  270. M.S. Shur, Solid-State Electron. 42, 2131 (1998)

    Article  Google Scholar 

  271. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Google Scholar 

  272. M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)

    Article  Google Scholar 

  273. R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009)

    Article  Google Scholar 

  274. R. Brazis, R. Raguotis, Phys. Status Solidi C 6, 2674 (2009)

    Article  Google Scholar 

  275. J.A. del Alamo, J. Joh, Microelectron. Reliab. 49, 1200 (2009)

    Article  Google Scholar 

  276. A. Katz, M. Franco, IEEE Microw. Mag. 11, S24 (2010)

    Article  Google Scholar 

  277. M. Razeghi, IEEE Photonics J. 3, 263 (2011)

    Article  Google Scholar 

  278. Y. Hao, J. Zhang, B. Shen, X. Liu, J. Semicond. 33, 081001 (2012)

    Article  Google Scholar 

  279. B.J. Baliga, Semicond. Sci. Tech. 28, 074011 (2013)

    Article  Google Scholar 

  280. S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, IEEE Trans. Electron Devices 60, 3238 (2013)

    Article  Google Scholar 

  281. D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, IEEE Microw. Mag. 14, 82 (2013)

    Article  Google Scholar 

  282. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)

    Article  Google Scholar 

  283. I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Device Lett. 32, 1534 (2011)

    Article  Google Scholar 

  284. B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)

    Article  Google Scholar 

  285. K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)

    Article  Google Scholar 

  286. S. Nakamura, Mater. Res. Soc. Bull. 22, 29 (1997)

    Article  Google Scholar 

  287. M.S. Shur, M.A. Khan, Mater. Res. Soc. Bull. 22, 44 (1997)

    Article  Google Scholar 

  288. A.A. Burk Jr., M.J. O’Loughlin, R.R. Siergiej, A.K. Agarwal, S. Sriram, R.C. Clarke, M.F. MacMillan, V. Balakrishna, C.D. Brandt, Solid-State Electron. 43, 1459 (1999)

    Article  Google Scholar 

  289. S. Nakamura, S.F. Chichibu (eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, New York, 2000)

    Google Scholar 

  290. M.A. Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M.S. Shur, B. Beaumont, M. Teisseire, G. Neu, Appl. Phys. Lett. 76, 3807 (2000)

    Article  Google Scholar 

  291. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story, 2nd edn. (Springer, New York, 2000)

    Book  Google Scholar 

  292. M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Proc. 4, 459 (2001)

    Article  Google Scholar 

  293. A. Krost, A. Dadgar, Phys. Status Solidi A 194, 361 (2002)

    Article  Google Scholar 

  294. A. Z̆ukauskas, M.S. Shur, R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002)

    Google Scholar 

  295. X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003)

    Article  Google Scholar 

  296. A. Jiménez, Z. Bougrioua, J.M. Tirado, A.F. Braña, E. Calleja, E. Muñoz, I. Moerman, Appl. Phys. Lett. 82, 4827 (2003)

    Article  Google Scholar 

  297. W. Lu, V. Kumar, E.L. Piner, I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003)

    Article  Google Scholar 

  298. C.L. Tseng, M.J. Youh, G.P. Moore, M.A. Hopkins, R. Stevens, W.N. Wang, Appl. Phys. Lett. 83, 3677 (2003)

    Article  Google Scholar 

  299. J.C. Carrano, A. Zukauskas (eds.), Optically Based Biological and Chemical Sensing for Defense (SPIE, Bellingham, 2004)

    Google Scholar 

  300. M.S. Shur, A. Zukauskas (eds.), UV Solid-State Light Emitters and Detectors (Kluwer, Boston, 2004)

    Google Scholar 

  301. M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, in Advances in GaN and ZnO-Based Thin Film, Bulk, and Nanostructured Materials and Devices, Materials and devices series in materials science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120

  302. Ü. Özgür, Ya I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  303. D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)

    Article  Google Scholar 

  304. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Superlattices Microstruct. 48, 458 (2010)

    Article  Google Scholar 

  305. C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)

    Article  Google Scholar 

  306. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)

    Article  Google Scholar 

  307. P.E. Van Camp, V.E. Doren, Solid State Commun. 95, 173 (1995)

    Article  Google Scholar 

  308. H. Gómez, T.R. Taylor, D.M. Neumark, J. Phys. Chem. A 105, 6886 (2001)

    Article  Google Scholar 

  309. H. Saitoh, W.A. Yarbrough, Diam. Relat. Mater. 1, 137 (1992)

    Article  Google Scholar 

  310. M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Relat. Mater. 9, 512 (2000)

    Article  Google Scholar 

  311. C.-X. Wang, G.-W. Yang, T.-C. Zhang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, G.-T. Zou, Appl. Phys. Lett. 83, 4854 (2003)

    Article  Google Scholar 

  312. F. Boakye, D. Nusenu, Solid State Commun. 102, 323 (1997)

    Article  Google Scholar 

  313. P. Lal, S.K. Srivastava, Microelectron. J. 29, 403 (1998)

    Article  Google Scholar 

  314. S. Chaure, N.B. Chaure, R.K. Pandey, A.K. Ray, IET Circuits Devices Syst. 1, 215 (2007)

    Article  Google Scholar 

  315. I. Friel, S.L. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Relat. Mater. 18, 808 (2009)

    Article  Google Scholar 

  316. P. Hess, J. Appl. Phys. 111, 051101 (2012)

    Article  Google Scholar 

  317. A.R. Peaker, A. Mottram, J. Phys. D.: Appl. Phys. 5, 803 (1972)

    Article  Google Scholar 

  318. P.V. Gatenby, A.K. Kar, M.F. Kimmitt, IEEE J. Quantum Electron. 15, 69 (1979)

    Article  Google Scholar 

  319. B.M. Wessels, Electron. Lett. 15, 748 (1979)

    Article  Google Scholar 

  320. A. Tosser, M. Arsalane, A. Piel, Opt. Quantum Electron. 8, 69 (1976)

    Article  Google Scholar 

  321. N. Hebalkar, A. Lobo, S.R. Sainkar, S.D. Pradhan, W. Vogel, J. Urban, S.K. Kulkarni, J. Mater. Sci. 36, 4377 (2001)

    Article  Google Scholar 

  322. C.G. Rodrigues, Eur. Phys. J. B 72, 405 (2009)

    Article  Google Scholar 

  323. S. Miwa, K. Kimura, T. Yasuda, L.H. Kuo, S. Jin, K. Tanaka, T. Yao, Appl. Surf. Sci. 107, 184 (1996)

    Article  Google Scholar 

  324. V.D. Ryzhikov, L.P. Gal’chinetskii, S.N. Galkin, K.A. Katrunov, E.K. Lisetskaya, Proc. SPIE 3359, 302 (1998)

    Article  Google Scholar 

  325. M.A. Abdel-Rahim, M.M. Hafiz, A.E.B. Alwany, Opt. Laser Technol. 47, 88 (2013)

    Article  Google Scholar 

  326. H.S. Hajghassem, W.D. Brown, M.M. Luqman, Microelectron. Reliab. 27, 677 (1987)

    Article  Google Scholar 

  327. M. Neumann-Spallart, C. Königstein, Thin Solid Films 265, 33 (1995)

    Article  Google Scholar 

  328. M.A. Khan, Q. Chen, C.J. Sun, M. Shur, B. Gelmont, Appl. Phys. Lett. 67, 1429 (1995)

    Article  Google Scholar 

  329. S. Yoshida, S. Misawa, S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983)

    Article  Google Scholar 

  330. H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996)

    Article  Google Scholar 

  331. C.A. Hurni, J.R. Lang, P.G. Burke, J.S. Speck, Appl. Phys. Lett. 101, 102106 (2012)

    Article  Google Scholar 

  332. Z.C. Huang, R. Goldberg, J.C. Chen, Y. Zheng, D.B. Mott, P. Shu, Appl. Phys. Lett. 67, 2825 (1995)

    Article  Google Scholar 

  333. S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997)

    Article  Google Scholar 

  334. A. Matulionis, J. Liberis, L. Ardaravic̆ius, M. Ramonas, I. Matulionienė, J. Smart, Semicond. Sci. Technol 17, L9 (2002)

    Article  Google Scholar 

  335. C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Phys. Rev. B 68, 115205 (2003)

    Article  Google Scholar 

  336. R. Brazis, R. Raguotis, Appl. Phys. Lett. 85, 609 (2004)

    Article  Google Scholar 

  337. A.A.P. Silva, V.A. Nascimento, J. Lumin. 106, 253 (2004)

    Article  Google Scholar 

  338. C.E. Martinez, N.M. Stanton, A.J. Kent, M.L. Williams, I. Harrison, H. Tang, J.B. Webb, J.A. Bardwell, Semicond. Sci. Technol. 21, 1580 (2006)

    Article  Google Scholar 

  339. M. Tas, B. Tanatar, Phys. Status Solidi C 4, 372 (2007)

    Article  Google Scholar 

  340. A. Matulionis, J. Liberis, IEE Proc. Circuits Devices Syst. 151, 148 (2004)

  341. M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005)

    Article  Google Scholar 

  342. J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, R.J. Shul, Phys. Status Solidi C 2, 2564 (2005)

    Article  Google Scholar 

  343. L. Ardaravic̆ius, M. Ramonas, O. Kiprijanovic, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, Y.J. Sun, Phys. Status Solidi A 202, 808 (2005)

    Article  Google Scholar 

  344. Y. Chang, K.Y. Tong, C. Surya, Semicond. Sci. Technol. 20, 188 (2005)

    Article  Google Scholar 

  345. S. Yamakawa, S.M. Goodnick, J. Branlard, M. Saraniti, Phys. Status Solidi C 2, 2573 (2005)

    Article  Google Scholar 

  346. A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)

    Article  Google Scholar 

  347. L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W.J. Schaff, J.R. Shealy, IEEE Trans. Electron Devices 48, 479 (2001)

    Article  Google Scholar 

  348. C.H. Oxley, M.J. Uren, IEEE Trans. Electron Devices 52, 165 (2005)

    Article  Google Scholar 

  349. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001)

    Article  Google Scholar 

  350. M.A. Osman, Proc. SPIE 4280, 109 (2001)

    Article  Google Scholar 

  351. T. Li, R.P. Joshi, R.D. del Rosario, IEEE Trans. Electron Devices 49, 1511 (2002)

    Article  Google Scholar 

  352. C. Sevik, C. Bulutay, IEEE Proc. Optoelectron. 150, 86 (2003)

    Article  Google Scholar 

  353. J. Edwards, K. Kawabe, G. Stevens, R.H. Tredgold, Solid State Commun. 3, 99 (1965)

    Article  Google Scholar 

  354. V.M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lübbers, A. Schober, J. Appl. Phys. 106, 023715 (2009)

    Article  Google Scholar 

  355. E. Bellotti, B.K. Joshi, K.F. Brennan, J.D. Albrecht, P.P. Ruden, J. Appl. Phys. 85, 916 (1999)

    Article  Google Scholar 

  356. T.L. Tansley, C.P. Foley, J. Appl. Phys. 59, 3241 (1986)

    Article  Google Scholar 

  357. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002)

    Article  Google Scholar 

  358. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff, J. Appl. Phys. 94, 4457 (2003)

    Article  Google Scholar 

  359. V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006)

    Article  Google Scholar 

  360. V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)

    Article  Google Scholar 

  361. J.S. Thakur, R. Naik, V.M. Naik, D. Haddad, G.W. Auner, H. Lu, W.J. Schaff, J. Appl. Phys. 99, 023504 (2006)

    Article  Google Scholar 

  362. F. Nava, C. Canali, C. Jacoboni, L. Reggiani, S.F. Kozlov, Solid State Commun. 33, 475 (1980)

    Article  Google Scholar 

  363. L. Reggiani, D. Waechter, S. Zukotynski, Phys. Rev. B 28, 3550 (1983)

    Article  Google Scholar 

  364. Y.C. Kao, O. Eknoyan, J. Appl. Phys. 54, 2468 (1983)

    Article  Google Scholar 

  365. R.H. Johnson, O. Eknoyan, J. Appl. Phys. 58, 1402 (1985)

    Article  Google Scholar 

  366. V.K. Arora, D.S.L. Mui, H. Morkoç, J. Appl. Phys. 61, 4703 (1987)

    Article  Google Scholar 

  367. R.P. Joshi, D.K. Ferry, Solid-State Electron. 38, 1911 (1995)

    Article  Google Scholar 

  368. H.-E. Nilsson, U. Sannemo, C.S. Petersson, J. Appl. Phys. 80, 3365 (1996)

    Article  Google Scholar 

  369. F. Gámiz, J.B. Roldán, J.A. López-Villanueva, VLSI Des. 8, 257 (1998)

    Article  Google Scholar 

  370. H.-E. Nilsson, M. Hjelm, C. Fröjdh, C. Persson, U. Sannemo, C.S. Petersson, J. Appl. Phys. 86, 965 (1999)

    Article  Google Scholar 

  371. M. Hjelm, H.-E. Nilsson, Phys. Scr. T114, 61 (2004)

    Article  Google Scholar 

  372. N. Fitzer, A. Kuligk, R. Redmer, M. Städele, S.M. Goodnick, W. Schattke, Semicond. Sci. Technol. 19, S206 (2004)

    Article  Google Scholar 

  373. A. Ilgaz, S. Gökden, R. Tülek, A. Teke, S. Özçelik, E. Özbay, Eur. Phys. J. Appl. Phys. 55, 30102 (2011)

    Article  Google Scholar 

  374. D.R. Naylor, A. Dyson, B.K. Ridley, Solid State Commun. 152, 549 (2012)

    Article  Google Scholar 

  375. D.R. Naylor, A. Dyson, B.K. Ridley, J. Appl. Phys. 111, 053703 (2012)

    Article  Google Scholar 

  376. E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013)

    Article  Google Scholar 

  377. S. Dasgupta, J. Lu, Nidhi, A. Raman, C. Hurni, G. Gupta, J.S. Speck, U.K. Mishra, Appl. Phys. Express 6, 034002 (2013)

    Article  Google Scholar 

  378. J.-Z. Zhang, A. Dyson, B.K. Ridley, Appl. Phys. Lett. 102, 062104 (2013)

    Article  Google Scholar 

  379. J.J. Freedsman, A. Watanabe, Y. Urayama, T. Egawa, Appl. Phys. Lett. 107, 103506 (2015)

    Article  Google Scholar 

  380. Z. Kourdi, B. Bouazza, A. Guen-Bouazza, M. Khaouani, Microelectron. Eng. 142, 52 (2015)

    Article  Google Scholar 

  381. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46, 10086 (1992)

    Article  Google Scholar 

  382. C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F.H. Julien, W.G. Schmidt, K. Lischka, D.J. As, Phys. Rev. B 83, 195301 (2011)

    Article  Google Scholar 

  383. H. Vilchis, V.M. Sánchez-R, Mater. Sci. Semicond. Proc. 37, 68 (2015)

    Article  Google Scholar 

  384. M.-H. Kim, F.S. Juang, Y.G. Hong, C.W. Tu, S.-J. Park, in MBE 2002–2002 12th International Conference on Molecular Beam Epitaxy (2002)

  385. M. Mizuta, S. Fujieda, Y. Matsumoto, T. Kawamura, Jpn. J. Appl. Phys. 25, L945 (1986)

    Article  Google Scholar 

  386. J.I. Pankove, Mater. Res. Soc. Symp. Proc. 97, 409 (1987)

    Article  Google Scholar 

  387. S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D.J. Smith, W.J. Choyke, H. Morkoç, J. Vac. Sci. Technol. B 9, 1924 (1991)

    Article  Google Scholar 

  388. H. Liu, A.C. Frenkel, J.G. Kim, R.M. Park, J. Appl. Phys. 74, 6124 (1993)

    Article  Google Scholar 

  389. T.S. Cheng, L.C. Jenkins, S.E. Hooper, C.T. Foxon, J.W. Orton, D.E. Lacklison, Appl. Phys. Lett. 66, 1509 (1995)

    Article  Google Scholar 

  390. D. Schikora, M. Hankeln, D.J. As, K. Lischka, T. Litz, A. Waag, T. Buhrow, F. Henneberger, Phys. Rev. B 54, R8381 (1996)

    Article  Google Scholar 

  391. J.H. Buß, J. Rudolph, T. Schupp, D.J. As, K. Lischka, D. Hägele, Appl. Phys. Lett. 97, 062101 (2010)

    Article  Google Scholar 

  392. A.W. Wood, R.R. Collino, B.L. Cardozo, F. Naab, Y.Q. Wang, R.S. Goldman, J. Appl. Phys. 110, 124307 (2011)

    Article  Google Scholar 

  393. L. Gao, Opt. Quantum Electron. 47, 1941 (2015)

    Article  Google Scholar 

  394. K. Mazumdar, R.K. Ranjan, R. Shankar, A. Sharan, B. Priyadarshini, M. Kundu, A. Ghosal, Superlattices Microstruct. 100, 983 (2016)

    Article  Google Scholar 

  395. L. Sang, X. Yang, J. Cheng, L. Jia, Z. He, L. Guo, A. Hu, Y. Xiang, T. Yu, M. Wang, F. Xu, N. Tang, X. Wang, W. Ge, B. Shen, Appl. Phys. Lett. 107, 052102 (2015)

    Article  Google Scholar 

  396. G. Santoruvo, A. Allain, D. Ovchinnikov, E. Matioli, Appl. Phys. Lett. 109, 103102 (2016)

    Article  Google Scholar 

  397. W.M. Waller, M.J. Uren, K.B. Lee, P.A. Houston, D.J. Wallis, I. Guiney, C.J. Humphreys, S. Pandey, J. Sonsky, M. Kuball, IEEE Trans. Electron Devices 63, 1861 (2016)

    Article  Google Scholar 

  398. S. Wang, H. Liu, H. Zhang, Q. Chen, Appl. Phys. A 122, 578 (2016)

    Article  Google Scholar 

  399. Z. Gu, S.L. Ban, D.D. Jiang, Y. Qu, J. Appl. Phys. 121, 035703 (2017)

    Article  Google Scholar 

  400. C. Ostermaier, P. Lagger, G. Prechtl, A. Grill, T. Grasser, D. Pogany, Appl. Phys. Lett. 110, 173502 (2017)

  401. M. Zhu, M. Qi, K. Nomoto, Z. Hu, B. Song, M. Pan, X. Gao, D. Jena, H.G. Xing, Appl. Phys. Lett. 110, 182102 (2017)

    Article  Google Scholar 

  402. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)

    Google Scholar 

  403. E. Baghani, S.K. O’Leary, Appl. Phys. Lett. 99, 262106 (2011)

    Article  Google Scholar 

  404. W.A. Hadi, P. Siddiqua, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 5524 (2014)

    Google Scholar 

  405. Z. Lin, H. Wang, Y. Lin, M. Yang, W. Wang, G. Li, J. Phys. D: Appl. Phys. 49, 115112 (2016)

    Article  Google Scholar 

  406. S. Wang, H. Liu, Q. Chen, H. Zhang, J. Mater. Sci.: Mater. Electron. 27, 11353 (2016)

    Google Scholar 

  407. D. Barettin, M. Auf der Maur, A. di Carlo, A. Pecchia, A.F. Tsatsulnikov, W.V. Lundin, A.V. Sakharov, A.E. Nikolaev, M. Korytov, N. Cherkashin, M.J. Hÿtch, S.Y. Karpov, Nanotechnology 28, 275201 (2017)

    Article  Google Scholar 

  408. N.A. Masyukov, A.V. Dmitriev, J. Appl. Phys. 122, 065701 (2017)

    Article  Google Scholar 

  409. W.A. Hadi, M. Shur, L.F. Eastman, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1327 (2011). https://doi.org/10.1557/opl.2011.851

  410. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). https://doi.org/10.1557/opl.2013.534

  411. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). https://doi.org/10.1557/opl.2013.535

  412. W.A. Hadi, E. Baghani, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). https://doi.org/10.1557/opl.2013.649

  413. P. Siddiqua, W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1805 (2015). https://doi.org/10.1557/opl.2015.577

  414. P. Siddiqua, M.S. Shur, S.K. O’Leary, MRS Adv. (2016). https://doi.org/10.1557/adv.2016.274

  415. P. Siddiqua, M.S. Shur, S.K. O’Leary, MRS Adv. (2017). https://doi.org/10.1557/adv.2017.348

  416. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)

    Article  Google Scholar 

  417. L.-A. Yang, Q.-Y. Yao, X.-H. Zhang, Q. Liu, Y. Hao, in 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (2010), p. 1566

  418. Z. Yarar, J. Electron. Mater. 40, 466 (2011)

    Article  Google Scholar 

  419. F.B. Baghsiyahi, M.R. Roknabadi, H. Arabshahi, Physica E 47, 252 (2013)

    Article  Google Scholar 

  420. A.A. Grinberg, S. Luryi, IEEE Trans. Electron Devices 45, 1561 (1998)

    Article  Google Scholar 

  421. I.N. Volovichev, J.E. Velázquez-Perez, Yu.G. Gurevich, Solid-State Electron. 52, 1703 (2008)

    Article  Google Scholar 

  422. T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 46, L889 (2007)

    Article  Google Scholar 

  423. D.F. Storm, M.T. Hardy, D.S. Katzer, N. Nepal, B.P. Downey, D.J. Meyer, T.O. McConkie, L. Zhou, D.J. Smith, J. Cryst. Growth 456, 121 (2016)

    Article  Google Scholar 

  424. D. Garrido-Diez, I. Baraia, in 2017 IEEE IEEE International Workshop of Control, Measurement, Signals and their Application to Mechatronics. (2017). https://doi.org/10.1109/ECMSM.2017.7945876

  425. Y.B. Kwon, J.H. Je, P. Ruterana, G. Nouet, J. Vac. Sci. Technol. A 23, 1588 (2005)

    Article  Google Scholar 

  426. R.A. Oliver, M.J. Kappers, C.J. Humphreys, Appl. Phys. Lett. 89, 011914 (2006)

    Article  Google Scholar 

  427. D.C. Look, R.J. Molnar, Appl. Phys. Lett. 70, 3377 (1997)

    Article  Google Scholar 

  428. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)

    Article  Google Scholar 

  429. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87, 334 (2000)

    Article  Google Scholar 

  430. R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J.R. Shealy, L.F. Eastman, O. Ambacher, M. Stutzmann, J. Appl. Phys. 87, 3375 (2000)

    Article  Google Scholar 

  431. I. Saidi, H. Mejri, M. Baira, H. Maaref, Superlattices Microstruct. 84, 113 (2015)

    Article  Google Scholar 

  432. H. Tokuda, K. Kodama, M. Kuzuhara, Appl. Phys. Lett. 96, 252103 (2010)

    Article  Google Scholar 

  433. B. Gelmont, M.S. Shur, J. Appl. Phys. 78, 2846 (1995)

    Article  Google Scholar 

  434. J. Hong, J.W. Lee, C.B. Vartuli, J.D. Mackenzie, S.M. Donovan, C.R. Abernathy, R.V. Crockett, S.J. Pearton, J.C. Zolper, F. Ren, Solid-State Electron. 41, 681 (1997)

    Article  Google Scholar 

  435. D.N. Talwar, D. Sofranko, C. Mooney, S. Tallo, Mater. Sci. Eng. B 90, 269 (2002)

    Article  Google Scholar 

  436. J.W. Johnson, E.L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J.C. Roberts, J.D. Brown, S. Singhal, K.J. Linthicum, IEEE Electron Device Lett. 25, 459 (2004)

    Article  Google Scholar 

  437. D. Ducatteau, A. Minko, V. Hoël, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquière, J.C. De Jaeger, S. Delage, IEEE Electron Device Lett. 27, 7 (2006)

    Article  Google Scholar 

  438. S. Arulkumaran, G.I. Ng, S. Vicknesh, H. Wang, K.S. Ang, C.M. Kumar, K.L. Teo, K. Ranjan, Appl. Phys. Express 6, 016501 (2013)

    Article  Google Scholar 

  439. F. Medjdoub, B. Grimbert, D. Ducatteau, N. Rolland, Appl. Phys. Express 6, 044001 (2013)

    Article  Google Scholar 

  440. S. Arulkumaran, G.I. Ng, S. Vicknesh, IEEE Electron Device Lett. 34, 1364 (2013)

    Article  Google Scholar 

  441. K. Ranjan, S. Arulkumaran, G.I. Ng, S. Vicknesh, Appl. Phys. Express 7, 044102 (2014)

    Article  Google Scholar 

  442. S. Huang, K. Wei, G. Liu, Y. Zheng, X. Wang, L. Pang, X. Kong, X. Liu, Z. Tang, S. Yang, Q. Jiang, K.J. Chen, IEEE Electron Device Lett. 35, 315 (2014)

    Article  Google Scholar 

  443. L. Yang, M. Mi, B. Hou, H. Zhang, J. Zhu, Q. Zhu, Y. Lu, M. Zhang, Y. He, L. Chen, X. Zhou, L. Lv, X. Ma, Y. Hao, IEEE Electron Device Lett. 38, 1563 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the guidance and support of their collaborator and friend, Dr. Michael S. Shur, of Rensselaer Polytechnic Institute, whose contributions have played an important role in shaping many of the results presented herein. Financial support from the Natural Sciences and Engineering Research Council of Canada is also gratefully acknowledged.

Funding

The funding was provided by Natural Sciences and Engineering Research Council of Cananda (Grant No. 102605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Appendices

Appendix: Further details related to our Monte Carlo algorithm

We now provide further details of the semi-classical Monte Carlo algorithm employed for the purposes of our simulations of the electron transport within the III–V nitride semiconductors, GaN and InN. Initially, we overview a more detailed flow chart corresponding to our approach. Then, details of some of the trickier parts of our Monte Carlo algorithm will be discussed. The generation of the free-flight time will then be covered and then the selection of the scattering event (after a free-flight) will be described.

1.1 Flow chart for our Monte Carlo algorithm

A more detailed flow chart for our Monte Carlo algorithm is shown in Fig. 49. This flow chart provides a detailed description of how the dynamics of the electrons are handled, as well as how the statistics are kept during the simulation.

Fig. 49
figure 49

(Copyright permission was obtained from Springer)

A more complete flowchart for our Monte Carlo algorithm used for simulating electron transport within the III–V nitride semiconductors, GaN and InN. This figure is the same as that depicted in Fig. A1 of O’Leary et al. [129]

Fig. 50
figure 50

(Copyright permission was obtained from Springer)

The scattering mechanism selection process. This figure has been modified from Fig. A2 of O’Leary et al. [129]. The online version of this figure is depicted in color

When the simulation initializes, it reads the input file and sets the simulation parameters. Next, the initial electron distribution is determined. During this stage, each electron in the simulation is given an initial wave-vector in accordance with a Maxwell-Boltzmann distribution. At the same time, a rejection technique is used in order to ensure that the number of electrons in any given region of \(\vec {k}\)-space never exceeds the Fermi-Dirac limit. This technique provides a close approximation to an initial Fermi-Dirac distribution.

Next, the electric field is set and the scattering rate tables are initialized. The time-step is set to zero and then a loop is entered which moves each particle through free-flights and scattering events until the end of the time-step is reached. After all of the particles are moved, macroscopic quantities, such as the electron drift velocity, are calculated over the distribution and stored in temporary arrays. At the end of the simulation, the accumulated statistics are output to a file. In the next sections, details of some of these steps are provided.

1.2 Generation of the free-flight times

The electron energy and its wave-vector, \(\vec {k}\), determine the probability that this electron will scatter by means of any of the aforementioned scattering processes. In between each scattering event, the electron’s motion is determined through semi-classical physics, i.e., Eqs. (4) and (5). The amount of time between each scattering event is determined statistically, based on the total scattering rate,

$$\begin{aligned} \lambda \left( \vec {k}\right) = \sum _i \lambda _i \left( \vec {k}\right) , \end{aligned}$$
(9)

which is just the sum of the individual scattering rates corresponding to each scattering mechanism. The statistically determined time between scattering events is known as the free-flight time, \(t_{f}\).

Generating a proper distribution of free-flight times is essential in order to obtain correct simulation results. A number of methods, used for the purposes of generating these free-flight times, have already been studied in detail [167]. A derivation of the algorithm used in our simulations of the electron transport within the III–V nitride semiconductors, GaN and InN, will be provided here.

We first note that the probability distribution, \(P\left( t\right)\), for the free-flight time, of length t, is just the probability that an electron survives without a collision to time t multiplied by the probability of a collision within a small interval, dt, around t. The probability of a collision within dt of t is simply the product of the scattering rate at time t and dt. The first part of the distribution, the probability that the electron survives to time t without a collision, can be found by assuming that the scattering processes are Poisson in nature. For a Poisson process, the probability of no scattering event for any interval, \(\delta t = t_2 - t_1\), is \(P\left( N = 0\right) = \exp \left( -\lambda \delta t\right)\). If the scattering rate is constant, this would be the distribution we require. However, the scattering rate changes with time as the electron drifts under the action of the applied electric field. To take into account the fact that the scattering rates change with time, we divide the interval, \(\left[ 0, t\right]\), into i small intervals. The probability, \(p_i\), that no scattering event occurs, in interval i, is

$$\begin{aligned} p_i = \exp \left( -\lambda _i \delta t\right) , \end{aligned}$$
(10)

where \(\lambda _i\) is the scattering rate during interval i and \(\delta t\) is the duration of interval i. The probability that no scattering event occurs in any of the i intervals, 0 through N, is the product of the probabilities for each interval, i.e.,

$$\begin{aligned} p\left( t\right)= & {} \prod \nolimits _{i = 0}^N \exp \left[ -\lambda _i \delta t\right] , \nonumber \\= & {} \exp \left( -\sum \nolimits _{i = 0}^N \lambda _i \delta t\right) . \end{aligned}$$
(11)

Letting the intervals become very small, i.e., \(\delta t \rightarrow dt\), the sum of Eq. (11) reduces to an integral, i.e.,

$$\begin{aligned} p\left( t\right) = \exp \left[ -\int _0^t \lambda \left( \vec {k}\left( t'\right) \right) dt'\right] . \end{aligned}$$
(12)

The free-flight time distribution then becomes the scattering rate multipled by \(p\left( t\right)\), i.e.,

$$\begin{aligned} P\left( t\right) = \lambda \left( \vec {k}\left( t\right) \right) \exp \left[ -\int _0^t \lambda \left( \vec {k}\left( t'\right) \right) dt'\right] . \end{aligned}$$
(13)

In order to generate random free-flight times, with a given \(P\left( t\right)\), we apply a direct method [76]. In particular, we select a random number, r, with a uniform distribution between [0, 1], and set it equal to the integrated probability distribution function, i.e.,

$$\begin{aligned} r = \int _0^tP\left( t'\right) dt'. \end{aligned}$$
(14)

Substituting Eq. (13) into Eq. (14), and solving the integral, yields

$$\begin{aligned} r = 1 - \exp \left[ -\int _0^{t} \lambda \left( \vec {k}\left( t'\right) \right) dt'\right] . \end{aligned}$$
(15)

Thus, we conclude that

$$\begin{aligned} -\ln \left( 1-r\right) = \int _0^{t} \lambda \left( \vec {k}\left( t'\right) \right) dt'. \end{aligned}$$
(16)

A time, t, must be found which satisfies the above equation for the random number, r.

One difficulty in evaluating the integral over \(\lambda\) is that it is a complicated function of t. This problem can be overcome by introducing an artificial scattering mechanism, known as the self-scattering mechanism, \(\lambda _0\left( \vec {k}\right)\). This new mechanism makes the total scattering rate constant over some interval of time, i.e.,

$$\begin{aligned} \Gamma = \lambda _0\left( \vec {k}\right) + \lambda \left( \vec {k}\right) . \end{aligned}$$
(17)

Yorston [167] discusses several algorithms for generating the free-flight times using this self-scattering concept. One of the the most efficient algorithms, and the one employed in our Monte Carlo simulations of the electron transport within the III–V nitride semiconductors, GaN and InN, is the constant-time method. In this method, a fixed time, \(t_{\text{inc}}\), is chosen, and the integral in Eq. (16) is carried out over intervals of length \(t_{\text{inc}}\). In each interval, a self-scattering mechanism, \(\lambda _0\left( \vec {k}\right)\), is added in order to make the total scattering rate constant and greater than \(\lambda \left( \vec {k}\right)\) during the \(t_{\text{inc}}\) interval. Fig. 50 illustrates this algorithm. The free-flight time is chosen when the total integral satisfies Eq. (16). At that time, \(\lambda _0\left( \vec {k}\right)\) and each \(\lambda _i\left( \vec {k}\right)\) are used to determine the choice of scattering event.

In the case a self-scattering mechanism is chosen, special treatment is necessary. The integral for the next free-flight time must continue where the previous one left off. In the example shown in Fig. 50, the integral from t to \(4 t_{\text{inc}}\) is first used, then that from \(4 t_{\text{inc}}\) to \(5 t_{\text{inc}}\) is used, and so on.

1.3 Choice of scattering event

Once the electron finishes its free-flight, it scatters. The choice of the scattering event is also made with a random number. This time, the probability that a particular scattering event is selected is directly proportional to the scattering rates corresponding to that particular mechanism. A random number, r, uniformly distributed between [0, 1], is chosen, and the scattering mechanism, i, which satisfies

$$\begin{aligned} S_i< r < S_{i+1}, \end{aligned}$$
(18)

where

$$\begin{aligned} S_i = \frac{\sum _{j=0}^i \lambda _j\left( \vec {k}\right) }{\Gamma }, \end{aligned}$$
(19)

is selected, where

$$\begin{aligned} \Gamma = \sum _{i} \lambda _i\left( \vec {k}\right) . \end{aligned}$$
(20)

Once the scattering mechanism is selected, the final wave-vector of the electron must be chosen. This selection must, of course, obey conservation of energy. With this requirement, there exists a sphere in \(\vec {k}\)-space into which the electron is allowed to scatter. Therefore, by determining the angle (azimuthal and polar) from the electron’s original direction, we may uniquely select the final wave-vector for the electron, and at the same time select the phonon with which the electron is scattering, in order to obey conservation of momentum considerations. For all the scattering mechanisms selected in our Monte Carlo approach, the selection of the azimuthal angle is done with a uniform distribution, i.e., there is no preference in terms of the azimuthal angle. However, many of the scattering mechanisms have a preference with the polar angle. For each of the scattering mechanisms in the Monte Carlo approach, the dependence of the scattering rate with the polar angle is known, i.e.,

$$\begin{aligned} \lambda _i\left( \vec {k}\right) = \int _0^{2\pi }P_i\left( \theta , \vec {k}\right) d\theta . \end{aligned}$$
(21)

There are three different techniques available for converting random numbers with a uniform distribution into one with an arbitrary distribution. These are the direct, rejection, and combined techniques, which are all described by Jacoboni and Lugli [76]. For most of the scattering mechanisms used in our Monte Carlo approach, the rejection technique is used to determine the polar angles. However, some of the most important mechanisms are handled differently. For polar optical phonon and piezoelectric scattering, a combined technique is used. For ionized impurity scattering at low energies, when non-parabolicity can be ignored, the direct technique is used. In other cases, the rejection technique is used, except when the distribution is highly peaked, in which case a combined technique is used.

The simulation continues, moving the electron through each time-step until a special time-step is reached, known as the collection time. After this special time-step, the macroscopic averages, which are stored in temporary arrays, are averaged and stored in permanent arrays. Each average is simply the average over all of the electrons in the simulation. For example, for the electron drift velocity,

$$\begin{aligned} \bar{v}\left( t\right) = \frac{\Sigma v_i\left( t\right) }{N}, \end{aligned}$$
(22)

where N denotes the total number of electrons. After each collection time, the scattering rates tables are also recalculated. This occurs because some of the scattering rates, i.e., polar optical phonon, ionized impurity, and piezoelectric, are a function of the electron temperature, which changes throughout the simulation. If the simulation requires that the applied electric field strength to be updated, then it is updated after every fourth collection time (this number can be adjusted). The average from that fourth collection time is assumed to be in steady-state and is associated with the electric field during that interval. At the end of the simulation, the quantities stored in the permanent arrays are written to an output file.

1.4 Monte Carlo codes available on the internet

A variety of Monte Carlo codes, for the purposes of simulating the steady-state and transient electron transport within bulk semiconductors, are available on the internet. For example, SDemon is available at: https://www.nanohub.org/simulation_tools/sdemon_tool_information

For a description of the theoretical basis of SDemon and its implementation, please consult, M. A. Stettler, “Monte Carlo Studies of Electron Transport in Silicon Bipolar Transistors,” MSEE Thesis, Purdue University, West Lafayette, Indianna, December 1990 and the SDemon User’s Manual. The program is written in Fortran 77. The program author was M. A. Stettler of Purdue University.

Note to Reader

Many of the results presented herein, and portions of the text, are borrowed from our previous review articles, i.e., “Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: a review,” which was published in the Journal of Materials Science: Materials in Electronics in 2006 [129], “Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review,” which was published in the Journal of Materials Science: Materials in Electronics in 2014 [142], and “A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, indium nitride, and zinc oxide: a critical and retrospective review,” which was published in the Journal of Materials Science: Materials in Electronics in 2015 [143]. Copyright permission was obtained from Springer. Some results and portions of the text were also borrowed from three other articles of ours previously published in the Journal of Applied Physics, namely, “Transient electron transport in wurtzite GaN, InN, and AlN” [120], “The steady-state and transient electron transport within bulk zinc-blende indium nitride: the impact of crystal temperature and doping concentration variations” [155], and “The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley” [156]. Copyright permission was obtained from the American Institute of Physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqua, P., O’Leary, S.K. Electron transport within the wurtzite and zinc-blende phases of gallium nitride and indium nitride. J Mater Sci: Mater Electron 29, 3511–3567 (2018). https://doi.org/10.1007/s10854-017-8324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8324-1

Navigation