Skip to main content
Log in

In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)/samarium doped titanium dioxide (Sm-TiO2) nanocomposites were prepared through in situ polymerization of aniline with different contents of Sm-TiO2 nanoparticles. The structure and morphology of the nanocomposites were characterized by FT-IR, UV, XRD, HRTEM, SEM, DSC and TGA. The electrical performances of the nanocomposites were investigated by AC and DC conductivity measurements. The effect of nanoparticles on PANI with the carbon monoxide, ammonia and hydrogen sulphide gas sensing properties were also studied. The results from FTIR and UV show the interaction of nanoparticles with PANI. The XRD study revealed the systematic arrangement of nanoparticles within the polymer matrix. HRTEM and SEM analysis showed the uniform structure of nanocomposites with spherically shaped dispersion of metal oxide nanoparticles. The result from DSC analysis indicated an increase in glass transition and melting temperature of nanocomposites than that of PANI. The higher thermal stability of the nanocomposite by the incorporation of nanoparticles was confirmed from TGA studies. The AC conductivity, dielectric constant and dielectric loss of composites were higher than pure PANI and the magnitude of these properties increased with the loading of nanoparticles. The DC conductivity indicates an increase in conductivity with increase in concentration of nanoparticles. The addition of metal oxide nanoparticles to PANI imparts excellent gas sensitivity to different gas at room temperature. Hence fabricated nanocomposites showed excellent thermal properties along with increased electrical conductivity and gas sensitivity, such type of nanocomposite can be used as a substitute for PANI in electrical or nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.T. Ramesan, V. Nidhisha, P. Jayakrishnan, Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater. Sci. Semicond. Process. 63, 253–260 (2017)

    Article  Google Scholar 

  2. D.K. Dash, S.K. Sahu, P.L. Nayak, Thermal degradation studies of substituted conducting polyanilines. J. Therm. Anal. Calorim. 86, 517–520 (2008)

    Article  Google Scholar 

  3. M.T. Ramesan, V. Nidhisha, P. Jayakrishnan, Facile synthesis, characterization and material properties of novel poly (vinyl cinnamate)/nickel oxide nanocomposites. Polym. Int. 66, 548–556 (2017)

    Article  Google Scholar 

  4. M.H. Kim, D.H. Bae, H.J. Choi, Y. Seo, Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. Polymer 119, 40–49 (2017)

    Article  Google Scholar 

  5. N.Y. Mostafa, M.B. Mohamed, N.G. Imam, M. Alhamyani, Z.K. Heiba, Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites. Colloid Polym. Sci. 294, 215–224 (2016)

    Article  Google Scholar 

  6. H. Yilmaz, H. Zengin, H.I. Unal, Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. J. Mater. Sci. 47, 5276–5286 (2012)

    Article  Google Scholar 

  7. K.V. Sivakumar, S. Kumar, Y. Haldorai, Zinc oxide nanoparticles reinforced conducting poly (aniline-co-p-phenylenediamine) nanocomposite. Compos. Interfaces 19, 397–409 (2012)

    Article  Google Scholar 

  8. M.T. Ramesan, T. Sampreeth, Synthesis, characterization, material properties and sensor application study of polyaniline/niobium doped titanium dioxide nanocomposites. J. Mater. Sci. 28, 16181–16191 (2017)

    Google Scholar 

  9. J.C. Aphesteguy, S.E. Jacobo, Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties. J. Mater. Sci. 42, 7062–7068 (2007)

    Article  Google Scholar 

  10. A. Nihmath, M.T. Ramesan, Fabrication, characterization and dielectric studies of NBR/hydroxyapatite nanocomposites. J. Inorg. Organomet. Polym. 27, 481–489 (2017)

    Article  Google Scholar 

  11. M. Bakir, J.L. Meyer, J. Economy, I. Jasiuk, Aromatic thermosetting copolyester nanocomposite foams: high thermal and mechanical performance lightweight structural materials. Polymer 123, 311–320 (2017)

    Article  Google Scholar 

  12. P. Jayakrishnan, M.T. Ramesan, Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly (vinyl alcohol) blend nanocomposites. J. Inorg. Organomet. Polym. 27, 323–333 (2017)

    Article  Google Scholar 

  13. C. Kızılkaya, F. Dumludag, S. Karatas, N.K. Apohan, A. Atindal, A. Gungor, The effect of titania content on the physical properties of polyimide/titania nanohybrid films. J. Appl. Polym. Sci. 125, 3802–3810 (2012)

    Article  Google Scholar 

  14. S.E. Assmann, J. Widoniak, G. Maret, Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem. Mater. 16, 6–11 (2004)

    Article  Google Scholar 

  15. H.T. Hien, H.T. Giang, T. Trung, C.V. Tuan, Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J. Mater. Sci. 52, 1694–1703 (2017)

    Article  Google Scholar 

  16. V. Stengl, S. Bakardjieva, N. Murafa, Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 114, 217–226 (2009)

    Article  Google Scholar 

  17. Q. Xiao, Z. Si, Z. Yu, G. Qiu, Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B 137, 189–194 (2007)

    Article  Google Scholar 

  18. T. Sampreeth, M.A. Al-Maghrabi, B. Bahuleyan, M.T. Ramesan, Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium doped titanium dioxide nanocomposites. J. Mater. Sci. 53, 591–603 (2018)

    Article  Google Scholar 

  19. Y. Ma, J. Zhang, B. Tian, F. Chen, L. Wang, Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J. Hazard Mater. 182, 386–393 (2010)

    Article  Google Scholar 

  20. S. Sharma, D. Kumar, Study on the solvatochromic behavior of polyaniline and alkyl substituted polyanilines. Indian J. Eng. Mater. Sci. 17, 231–237 (2010)

    Google Scholar 

  21. D.J. Park, T. Sekino, S. Tsukuda, A. Hayashi, T. Kusunose, S.I. Tanaka, Photoluminescence of samarium-doped TiO2 nanotubes. J. Solid State Chem. 184, 2695–2700 (2011)

    Article  Google Scholar 

  22. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites. J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-8110-0

    Google Scholar 

  23. M.T. Ramesan, Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethyl vinyl acetate nanocomposites. Int. J. Plast. Technol. 19, 368–380 (2015)

    Article  Google Scholar 

  24. T. Wan, F. Fei, R. Rong, W.Y. Chuan, Photo-differential scanning calorimetry study on photopolymerization of nanosized titanium dioxide/polyacrylate hybrid materials. Polym. Int. 55, 883–890 (2006)

    Article  Google Scholar 

  25. M.T. Ramesan, Synthesis, characterization and properties of new conducting polyaniline/copper sulphide nanocomposites. Polym. Eng. Sci. 54, 438–445 (2014)

    Article  Google Scholar 

  26. M.T. Ramesan, R.V.P. Abdu, P. Jayakrishnan, P.P. Pradyumnan, Acrylonitrile butadiene rubber (NBR)/manganous tungstate (MnWO4) nanocomposites: characterization, mechanical and electrical properties. AIP Conf. Proc. 1620, 3–9 (2014)

    Article  Google Scholar 

  27. M.T. Ramesan, V. Santhi, In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J. Mater. Sci. 28, 18804–18814 (2017)

    Google Scholar 

  28. P. Jayakrishnan, M.T. Ramesan, Synthesis, structural, magnetoelectric and thermal properties of poly (anthranilic acid)/magnetite nanocomposites. Polym. Bull. 74, 3179–3198 (2017)

    Article  Google Scholar 

  29. M.T. Ramesan, V.K. Athira, P. Jayakrishnan, C. Gopinathan, Preparation, characterization, antibacterial and electrical properties of sericin/poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites. J. Appl. Polym. Sci. 133, 5827–5836 (2016)

    Google Scholar 

  30. A. Nihmath, M.T. Ramesan, Development, characterization and conductivity studies of chlorinated EPDM. AIP Conf. Proc. 1620, 353–359 (2014)

    Article  Google Scholar 

  31. K. Funke, R. Hoppe, Jump-relaxation model yields Kohlrausch-Williams-Watts behaviour. Solid State Ion. 40, 200–204 (1990)

    Article  Google Scholar 

  32. B. Timmer, W. Olthuis, A.V.D. Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)

    Article  Google Scholar 

  33. P.P. Sengupta, S. Barik, B. Adhikari, Polyaniline as a gas-sensor material. Mater. Manuf. Process. 21, 263–270 (2006)

    Article  Google Scholar 

  34. D.S. Akbulut, T. Yalcin, S. Suzer, L. Toppare, Conducting polymers of aniline II. A composite as a gas sensor. Synth. Met. 60, 27–30 (1993)

    Article  Google Scholar 

  35. T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B 190, 120–126 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, and Prof. P. Pradeep, Department of Physics, NIT Calicut, for providing necessary facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesan, M.T., Sampreeth, T. In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications. J Mater Sci: Mater Electron 29, 4301–4311 (2018). https://doi.org/10.1007/s10854-017-8377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8377-1

Navigation