Skip to main content

Advertisement

Log in

Fabrication of silver doped attapulgite aerogels as anode material for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the rapid development of electric vehicles and communication equipment, the demand for lithium-ion batteries (LIBs) with high capacity, long lifespan, high stability, high power density and energy density is significantly increasing in recent years. Compared with commercial graphite anode materials, silicon-based materials have high specific capacity, low cost and low discharge potential. However, poor conductivity and severe volume expansion hinder its application. In this article, silver doped attapulgite (AT) aerogels were facilely fabricated and used as anode material for LIBs. The results of X-ray diffraction and Field emission scanning electron microscopy showed the size of silver nanoparticles were about 5–10 nm. The result of X-ray photoelectron spectroscopy indicated the silver nanoparticles were in the metallic nature state. The electrochemical measurements showed that the silver doped AT aerogels had good cycling stability and excellent rate capability. The discharge specific capacity of the nanocomposite was 133.0 mAh g−1 at a current density of 0.1 A g−1 after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Tang, Y. Zhu, Y. Hou, Energy Environ. Sci. 6, 2093–2104 (2013)

    Article  CAS  Google Scholar 

  2. B. Chen, Y. Meng, J. Sha, Nanoscale 10, 34–68 (2017)

    Article  Google Scholar 

  3. C. Xia, J. Guo, Y. Lei, Adv. Mater. 30, 1705580 (2018)

    Article  Google Scholar 

  4. J.I. Lee, Y. Ko, M. Shin, Energy Environ. Sci. 8, 2075–2084 (2015)

    Article  CAS  Google Scholar 

  5. K. Feng, M. Li, W. Liu, Small 14, 1702737 (2018)

    Article  Google Scholar 

  6. S. Wang, B.Y. Guan, L. Yu, Adv. Mater. 29, 1702724 (2017)

    Article  Google Scholar 

  7. G. Gao, W. Dang, H. Wu, G. Zhang, C. Feng, J. Mater. Sci. 29, 12804–12812 (2018)

    CAS  Google Scholar 

  8. B. Li, J. Zheng, H. Zhang, Adv. Mater. 30, 1705670 (2018)

    Article  Google Scholar 

  9. G. Lener, A.A. Garcia-Blanco, O. Furlong, Electrochim. Acta 279, 289–300 (2018)

    Article  CAS  Google Scholar 

  10. F. Zhang, L. Wan, J. Chen, Electrochim. Acta 280, 86–93 (2018)

    Article  CAS  Google Scholar 

  11. T. Shen, X. Xia, D. Xie, J. Mater. Chem. A 5, 11197–11203 (2017)

    Article  CAS  Google Scholar 

  12. Z. Yi, N. Lin, T. Xu, Chem. Eng. J. 347, 214–222 (2018)

    Article  CAS  Google Scholar 

  13. J. Ryu, D. Hong, M. Shin, ACS Nano 10, 10589–10597 (2016)

    Article  CAS  Google Scholar 

  14. K. Adpakpang, S.M. Oh, B. Park, Inorg. Chem. Front. 4, 521–529 (2017)

    Article  CAS  Google Scholar 

  15. H. Wan, H. Xiong, X. Liu, Dalton Trans. 47, 7522–7527 (2018)

    Article  CAS  Google Scholar 

  16. Y. Liu, Y. Kang, B. Mu, Chem. Eng. J. 237, 403–410 (2014)

    Article  CAS  Google Scholar 

  17. F. Yang, S. Sun, X. Chen, Appl. Clay Sci. 123, 134–140 (2016)

    Article  CAS  Google Scholar 

  18. H. Hou, M. Jing, Z. Huang, ACS Appl. Mater. Interfaces 7, 19362–19369 (2015)

    Article  CAS  Google Scholar 

  19. C.M. Subramaniyam, N.R. Srinivasan, Z. Tai, J. Mater. Chem. A 5, 7345–7354 (2017)

    Article  CAS  Google Scholar 

  20. F. Dou, L. Shi, P. Song, G. Chen, J. An, Chem. Eng. J. 338, 488–495 (2018)

    Article  CAS  Google Scholar 

  21. J.Y. Cheong, D.Y. Youn, C. Kim, Electrochim. Acta 269, 388–396 (2018)

    Article  CAS  Google Scholar 

  22. Y. Chen, J. Li, G. Yue, Nano-Micro Lett. 9, 32 (2017)

    Article  Google Scholar 

  23. B.L. He, B. Dong, H.L. Li, Electrochem. Commun. 9, 425–430 (2007)

    Article  CAS  Google Scholar 

  24. Y. Xing, T. Shen, T. Guo, J. Power Sources 384, 207–213 (2018)

    Article  CAS  Google Scholar 

  25. Y. Zhu, D. Chen, Mater. Des. 113, 60–67 (2017)

    Article  CAS  Google Scholar 

  26. Y. Lan, D. Chen, J. Mater. Sci. 53, 2054–2064 (2017)

    Article  Google Scholar 

  27. H. Luo, Y. Yang, Y. Sun, J. Solid State Electrochem. 19, 1171–1180 (2015)

    Article  CAS  Google Scholar 

  28. A.K. Nair, I. Elizabeth, S. Gopukumar, et al., Appl. Surf. Sci. 428, 1119–1129 (2018)

    Article  CAS  Google Scholar 

  29. S. Li, J. Huang, J. Mater. Chem. A 3, 4354–4360 (2015)

    Article  CAS  Google Scholar 

  30. D. Wang, M. Gao, J. Power Sources 256, 190–199 (2014)

    Article  CAS  Google Scholar 

  31. M. Zhang, H. Fan, N. Zhao, Chem. Eng. J. 347, 291–300 (2018)

    Article  CAS  Google Scholar 

  32. Q. Xie, Y. Ma, X. Wang, ACS Nano 10, 1283–1291 (2016)

    Article  CAS  Google Scholar 

  33. B. Lu, B. Ma, X. Deng, ACS Appl. Mater. Interfaces 9, 32829–32839 (2017)

    Article  CAS  Google Scholar 

  34. Y. Zhu, D. Chen, Ceram. Int. 44, 15873–15879 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Number CUSF-DH-D-2018014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Chen, D. Fabrication of silver doped attapulgite aerogels as anode material for lithium ion batteries. J Mater Sci: Mater Electron 29, 19873–19879 (2018). https://doi.org/10.1007/s10854-018-0117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0117-7

Navigation