Skip to main content

Advertisement

Log in

Effect of Nb and Fe co-doping on microstructure, dielectric response, ferroelectricity and energy storage density of PLZT

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The studies on the effect of simultaneous doping of donor (Nb) and acceptor (Fe) (0–8 at.% of each dopant) in PLZT (Pb0.97La0.02Zr0.52Ti0.48O3), on the dielectric response, ac conductivity and ferroelectricity are reported in this article. It is observed that the value of dielectric constant decreases, dielectric loss increases (moderately) and coercive field increases upon doping of Nb and Fe together. These indicate a hardening like effect as a result of the donor–acceptor co-doping. The ferroelectric to paraelectric phase transition occurs at lower temperatures for higher doping concentrations. For undoped PLZT the Curie temperature is around 353 °C which shifts to 305 °C for 8% Nb–Fe co-doped PLZT. Microstructure studies on the surface, as well as the interior of the samples are carried out which reveal a clear difference. The grain size is observed to decrease with doping concentration. The “true switchable polarization” is deduced by positive up negative down (PUND) tests and found to decrease with doping. Fatigue behavior is found to be positively enhanced upon co-doping of 2% Nb and Fe. Leakage current tests are carried out and it is found that the samples become more ‘leaky’ upon co-doping of Nb and Fe. The energy storage density is also investigated for these Nb–Fe co-doped PLZT ceramics. The highest recoverable energy storage density is observed for 2% Nb–Fe co-doped PLZT sample and it is around 134 mJ/cm3 with an efficiency of 0.28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Carl, K.H. Hardtl, Ferroelectrics 17, 473–486 (1977). https://doi.org/10.1080/00150197808236770

    Article  Google Scholar 

  2. A. Chandrasekaran, D. Damjanovic, N. Setter, N. Marzari, Phys. Rev. B 88(214116), 1–7 (2013). https://doi.org/10.1103/PhysRevB.88.214116

    Article  CAS  Google Scholar 

  3. D. Damjanovic, Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  4. R.D. Klissurska, K.G. Brooks, I.M. Reaney, C. Pawlaczyk, M. Kosec, N. Setter, J. Am. Ceram. Soc. 78, 1513–1520 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08846.x

    Article  CAS  Google Scholar 

  5. S.-Y. Chu, T.-Y. Chen, I.T. Tsai, Integr. Ferroelectr. 58, 1293–1303 (2003). https://doi.org/10.1080/10584580390259498

    Article  CAS  Google Scholar 

  6. W.I. Lee, J.k. Lee, Mater. Res. Bull. 30, 1185–1191 (1995). https://doi.org/10.1016/0025-5408(95)00137-9

    Article  CAS  Google Scholar 

  7. A. Kumar, S. Reddy Emani, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Eur. Ceram. Soc. 36, 2505–2511 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.035

    Article  CAS  Google Scholar 

  8. B.W. Lee, E.J. Lee, J. Electroceram. 17, 597–602 (2006). https://doi.org/10.1007/s10832-006-8568-2

    Article  CAS  Google Scholar 

  9. S. Samanta, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, Vaccum (2018). https://doi.org/10.1016/j.vacuum.2018.08.053

    Article  Google Scholar 

  10. D. Mukherjee, M. Hordagoda, D. Pesquera, D. Ghosh, J.L. Jones, P. Mukherjee, S. Witanachchi, Phys. Rev. B 95, 174304, (2017). https://doi.org/10.1103/PhysRevB.95.174304

    Article  Google Scholar 

  11. H.-J. Kleebe, S. Lauterbach, L. Silvestroni, H. Kungl, M.J. Hoffmann, E. Erdem, R.d.-A. Eichel, Appl. Phys. Lett. 94, 142901, (2009). https://doi.org/10.1063/1.3103313

    Article  CAS  Google Scholar 

  12. S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, M. Murakami, J. Mater. Sci. 52, 13012–13022 (2017). https://doi.org/10.1007/s10853-017-1425-7

    Article  CAS  Google Scholar 

  13. D. Guo, K. Cai, Y. Wang, J. Mater. Chem. C 5, 2531–2541 (2017). https://doi.org/10.1039/c6tc04648g

    Article  CAS  Google Scholar 

  14. Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Compos. Sci. Technol. 147, 30–38 (2017). https://doi.org/10.1016/j.compscitech.2017.05.004

    Article  CAS  Google Scholar 

  15. V. Dimza, A.I. Popov, L. Lāce, M. Kundzins, K. Kundzins, M. Antonova, M. Livins, Curr. Appl. Phys. 17, 169–173 (2017). https://doi.org/10.1016/j.cap.2016.11.010

    Article  Google Scholar 

  16. A. Johnscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Limited, London, 1983), p. 89

    Google Scholar 

  17. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57–R70 (1999). https://doi.org/10.1088/0022-3727/32/14/201

    Article  CAS  Google Scholar 

  18. D.P. Almond, C.R. Bowen, Phys. Rev. Lett. 92, 157601, (2004). https://doi.org/10.1103/PhysRevLett.92.157601

    Article  CAS  Google Scholar 

  19. J. Portelles, N.S. Almodovar, J. Fuentes, O. Raymond, J. Heiras, J.M. Siqueiros, J. Appl. Phys. 104, 073511, (2008). https://doi.org/10.1063/1.2988264

    Article  CAS  Google Scholar 

  20. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Mater. Sci. Eng. B 110, 58–63 (2004). https://doi.org/10.1016/j.mseb.2004.02.011

    Article  CAS  Google Scholar 

  21. B. Angadi, P. Victor, V.M. Jali, M.T. Lagare, R. Kumar, S.B. Krupanidhi, Mater. Sci. Eng. B, 100, 93–101 (2003), https://doi.org/10.1016/s0921-5107(03)00080-1

    Article  Google Scholar 

  22. M. Zheng, Y. Hou, Z. Ai, M. Zhu, J. Appl. Phys. 116, 124110, (2014). https://doi.org/10.1063/1.4896875

    Article  CAS  Google Scholar 

  23. W. Qiu, H.H. Hng, Ceram. Int. 30, 2171–2176 (2004). https://doi.org/10.1016/j.ceramint.2003.12.004

    Article  CAS  Google Scholar 

  24. L. Jin, Z. He, D. Damjanovic, Appl. Phys. Lett. 95, 012905, (2009). https://doi.org/10.1063/1.3173198

    Article  CAS  Google Scholar 

  25. R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Appl. Phys. Lett. 90, 112908, (2007). https://doi.org/10.1063/1.2713769

    Article  CAS  Google Scholar 

  26. S. Zhang, J.B. Lim, H.J. Lee, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 1523–1527 (2009). https://doi.org/10.1109/TUFFC.2009.1215

    Article  Google Scholar 

  27. K. Prabakar, S.P. Mallikarjun Rao, J. Alloys Compd. 437, 302–310 (2007). https://doi.org/10.1016/j.jallcom.2006.07.108

    Article  CAS  Google Scholar 

  28. T. Joe. Evans Jr., Hysteresis vs PUND - They are Equivalent (Understanding Ferroelectric Materials, Support documents, Radiant Technologies Inc.) August 1, 2008, https://www.ferrodevices.com/1/297/files/HysteresisEqualsPUND.pdf

  29. T. Haccart, D. Remiens, E. Cattan, Thin Solid Films 423, 235–242 (2003). https://doi.org/10.1016/s0040-6090(02)01045-3

    Article  CAS  Google Scholar 

  30. T. Sreesattabud, B.J. Gibbons, A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 39, S521–S524 (2013). https://doi.org/10.1016/j.ceramint.2012.10.126

    Article  CAS  Google Scholar 

  31. X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 43, 9060–9066 (2017). https://doi.org/10.1016/j.ceramint.2017.04.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibnath Samanta or K. Sethupathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Sankaranarayanan, V. & Sethupathi, K. Effect of Nb and Fe co-doping on microstructure, dielectric response, ferroelectricity and energy storage density of PLZT. J Mater Sci: Mater Electron 29, 20383–20394 (2018). https://doi.org/10.1007/s10854-018-0173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0173-z

Navigation