Skip to main content
Log in

The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric solid solutions of 0.67BiFeO3–0.33BaTiO3 were prepared by a Pechini method followed by quenching process. The XRD results indicate that both the furnace-cooled and water-quenched samples are consist of rhombohedral and tetragonal phases. SEM images show that the quenching process does not change the microstructure of 0.67BiFeO3–0.33BaTiO3 solid solutions. The quenched sample exhibits well-defined P–E hysteresis loop with remnant polarization of 23 µC/cm2 at room temperature. The leakage mechanism of the furnace-cooled sample is Ohmic conduction mechanism, whereas the leakage mechanism of water-quenched sample is predominated by field-assisted ionic conduction at room-temperature and 50 °C and then changes to three different conduction mechanisms at 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970)

    Article  CAS  Google Scholar 

  2. I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15, 4835–4846 (1982)

    Article  Google Scholar 

  3. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 14, 1719–1722 (2003)

    Article  Google Scholar 

  4. P. Fischer, M. PoIomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C: Solid State Phys. 13, 1931–1940 (1980)

    Article  CAS  Google Scholar 

  5. M. Valant, A.-K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007)

    Article  CAS  Google Scholar 

  6. S.M. Selbach, M.-A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)

    Article  CAS  Google Scholar 

  7. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108, 074107 (2010)

    Article  Google Scholar 

  8. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  9. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000)

    Article  CAS  Google Scholar 

  10. T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, K. Hashimoto, A ferroelectric ferromagnetcomposed of (PLZT)(x)-(BiFeO3)(1–x) solid solution. Adv. Mater. 13, 487–490 (2001)

    Article  CAS  Google Scholar 

  11. W.J. Huang, J. Yang, Y.F. Qin, P. Xiong, D. Wang, L.H. Yin, X.W. Tang, W.H. Song, P. Tong, X.B. Zhu, Y.P. Sun, Room temperature multiferrocity and magnetodielectric properties of ternary (1–x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (0 ≤ x ≤ 0.9) solid solutions. Appl. Phys. Lett. 111, 112902 (2017)

    Article  Google Scholar 

  12. L. Wu, B. Shen, Q.R. Hu, J. Chen, Y.P. Wang, Y.D. Xia, J. Yin, Z.G. Liu, Giant electromechanical strain response in lead-free SrTiO3 doped (Bi0.5Na0.5TiO3-BaTiO3)-LiNbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 4670–4679 (2017)

    Article  CAS  Google Scholar 

  13. X. Liu, F. Li, P. Li, J.W. Zhai, B. Shen, B.H. Liu, Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J. Eur. Ceram. Soc. 37, 4585–4595 (2017)

    Article  CAS  Google Scholar 

  14. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  CAS  Google Scholar 

  15. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.H. Li, H. Wang, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33, 1177–1183 (2013)

    Article  CAS  Google Scholar 

  16. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    CAS  Google Scholar 

  17. J. Chen, J.L. Wang, H.Y. Dai, T. li, Z.P. Chen, Investigations on the structure, defects, electrical and magnetic properties of Ni-substituted BiFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 27, 11151–11157 (2016)

    CAS  Google Scholar 

  18. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.-H. Kim, W.-J. Kim, D. Do, Il-K. Jeong, High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

  19. S. Kim, G.P. Khanal, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics. J. Appl. Phys. 122, 014103 (2017)

    Article  Google Scholar 

  20. D.S. Kim, C. Cheon, S.S. Lee, J.S. Kim, Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3-0.25BaTiO3 ceramics. Appl. Phys. Lett. 109, 202902 (2016)

    Article  Google Scholar 

  21. G.L. Yuan, S. Wing, Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1 – xNdxFeO3 (x = 0-0.15) ceramics. Appl. Phys. Lett. 88, 062905 (2006)

    Article  Google Scholar 

  22. X. Liu, B.H. Liu, F. Li, P. Li, J.W. Zhai, B. Shen, Relaxor phase evolution and temperature-insensitive large strain in B-site complex ions modified NBT-based lead-free ceramics. J. Mater. Sci. 53, 309–322 (2018)

    Article  CAS  Google Scholar 

  23. L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  24. U. Robels, G. Arlt, Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993)

    Article  CAS  Google Scholar 

  25. M. Hagiwara, S. Fujihara, Effects of CuO addition on electrical properties of 0.6BiFeO3-0.4(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 98, 469–475 (2015)

    Article  CAS  Google Scholar 

  26. P.J. Harrop, Dielectrics. (Butterworths, London, 1972)

    Google Scholar 

  27. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  28. S.J. Chu a, M. Zhang, H.L. Deng, Z.H. Wang, Y. Wang, Y.H. Pan, H. Yan, Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics. J. Alloy. Compd. 689, 475–480 (2016)

    Article  Google Scholar 

  29. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram Int. 38, 3829–3834 (2012)

    Article  CAS  Google Scholar 

  30. J. Wei, Y. Liu, X.F. Bai, C. Li, Y.L. Liu, Z. Xu, P. Gemeiner, R. Haumont, I.C. Infante, B. Dkhil, Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics. Ceram Int. 42, 13395–13403 (2016)

    Article  CAS  Google Scholar 

  31. C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006)

    Article  Google Scholar 

  32. N. Dhifallah, B. Hehlen, M. Dammak, H. Khemakhem, Phase formation and dielectric study of Bi doped (Ba0.8Sr0.2)Ti0.95(Zn1/ 3Nb2/3)0.05O3 ceramic. Mater. Chem. Phys. 181, 176–186 (2016)

    Article  CAS  Google Scholar 

  33. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. 28, 6673–6684 (2017)

    CAS  Google Scholar 

  34. T. Zheng, Y. Ding, J.G. Wu, Bi nonstoichiometry and composition engineering in (1-x)Bi1 + yFeO3 + 3y/2-xBaTiO3 ceramics. RSC Adv. 6, 90831 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0403502) and Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Yang, J., Xiong, P. et al. The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3–0.33BaTiO3 solid solutions. J Mater Sci: Mater Electron 29, 7311–7317 (2018). https://doi.org/10.1007/s10854-018-8720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8720-1

Navigation