Skip to main content
Log in

A comparative study of transport properties of copper doped cadmium selenide thin films at two dopant concentrations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have explored the effect of Cu dopant concentration on the electrical transport properties of Cu doped CdSe thin films at two concentrations of Cu (at 1 and 5 at.%). Structural, morphological and elemental analysis has been carried out by using X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). XRD analysis reveals the hexagonal (wurtzite) structure of nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films. EDX analysis determines the atomic weight percentage of Cu in these thin films. SEM studies reveal that the grains are uniformly distributed all over the surface of the substrates for nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films. Dark conductivity measurements are made on nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films in the temperature range 110–370 K in order to determine the effect of Cu concentration. The obtained results reveal that dark conductivity increases as the Cu dopant concentration increases as compared to undoped nc-CdSe thin films. Dark conductivity graphs show two distinct regions at high and low temperatures with decreasing activation energies. Low temperature data is analyzed using Mott’s variable-range hopping model which indicates hopping in localized states near the Fermi level. Various Mott parameters such as the density of localized states N(EF), characteristic temperature (To), hopping distance (R) and hopping energy (W) near the Fermi level are calculated. The concentration of charge carriers and carrier mobility are calculated for nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films by using Hall measurements. Constant photocurrent measurement is also performed on Cu 1% and Cu 5% doped CdSe thin films to determine occupied density of states, Urbach parameter and density of defect states. Obtained results show that occupied density of states increases for nc-CdSe:Cu 5% as compared to nc-CdSe:Cu 1% thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.Z. Hu, T. Zhu, Nanoscale Res. Lett. 10, 469 (2015)

    Article  Google Scholar 

  2. F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, ACS Appl. Mater. Interfaces 8, 34482 (2016)

    Article  Google Scholar 

  3. M.-L. Tu, Y.-K. Su, R.-T. Chen, Nanoscale Res. Lett. 9, 611 (2014)

    Article  Google Scholar 

  4. B.H. Kang, J.S. Lee, S.W. Lee, S.W. Kim, J.W. Lee, S.A. Gopalan, J.S. Park, D.H. Kwon, J.H. Bae, H.R. Kim, S.W. Kang, Sci. Rep. 6, 34659 (2016)

    Article  Google Scholar 

  5. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, S.R. Gosavi, J. Sci.: Adv. Mater. Dev. 1, 476 (2016)

    Google Scholar 

  6. S.J. Lim, A. Schleife, A.M. Smith, Nat. Commun. 8, 14849 (2017)

    Article  Google Scholar 

  7. J. Zhao, Y. Zeng, Q. Yang, Y. Li, L. Cui, C. Liu, J. Cryst. Growth 329, 1 (2011)

    Article  Google Scholar 

  8. V. Kumar, D.K. Sharma, K. Sharma, D.K. Dwivedi, Appl. Phys. A 122, 960 (2016)

    Article  Google Scholar 

  9. M.K. Khalaf, B.A.M. ALhilli, A.I. Khudiar, A.Abd Alzahra, Photon. Nanostruct. Fund. Appl. 18, 59 (2016)

    Article  Google Scholar 

  10. Y. Choi, M. Seol, W. Kim, K. Yong, J. Phys. Chem. C 118, 5664 (2014)

    Article  Google Scholar 

  11. T. Logu, K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, Electron. Mater. Lett. 11, 206 (2015)

    Article  Google Scholar 

  12. B.F.P. McVey, J. Butkus, J.E. Halpert, J.M. Hodgkiss, R.D. Tilley, J. Phys. Chem. Lett. 6, 1573 (2015)

    Article  Google Scholar 

  13. X. Wang, X. Yan, W. Li, K. Sun, Adv. Mater. 24, 2742 (2012)

    Article  Google Scholar 

  14. L.R. Bradshaw, K.E. Knowles, S. McDowall, D.R. Gamelin, Nano Lett. 15, 1315 (2015)

    Article  Google Scholar 

  15. S.M. Ng, M. Koneswaranb, R. Narayanaswamy, RSC Adv. 6, 21624 (2016)

    Article  Google Scholar 

  16. R. Xie, J. Su, M. Li, L. Guo, Int. J. Photoenergy 2013, 1 (2013)

    Google Scholar 

  17. Y. Deng, J. Yang, R. Yang, K. Shen, D. Wang, D. Wang, AIP Adv. 6, 015203 (2016)

    Article  Google Scholar 

  18. A.R. Krause, C.V. Neste, L. Senesac, T. Thundat, E. Finot, J. Appl. Phys. 103, 094906 (2008)

    Article  Google Scholar 

  19. M. Gunes, H. Hamza Cansever, G. Yilmaz, V. Smirnov, F. Finger, R. Bruggemann, J. Non-Cryst. Solids 358, 2074 (2012)

    Article  Google Scholar 

  20. K.M. Krishna, H. Ebisu, K. Hagimoto, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno, Appl. Phys. Lett. 78, 294 (2001)

    Article  Google Scholar 

  21. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Curr. Appl. Phys. 13, 964 (2013)

    Article  Google Scholar 

  22. R.H. Bube, M.N. L.E.Benatar, D. Grimbergen, Redfield, J. Appl. Phys. 72, 5766 (1992)

    Article  Google Scholar 

  23. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, J. Alloys Compd. 651, 42 (2015)

    Article  Google Scholar 

  24. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Mater. Res. Bull. 47, 1400 (2012)

    Article  Google Scholar 

  25. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, J. Alloys Compd. 564, 42 (2013)

    Article  Google Scholar 

  26. K. Asadi, A.J. Kronemeijer, T. Cramer, L.J. Anton Koster, W.M.P. Blom, Dago M. de Leeuw, Nat. Commun. 4, 1710 (2013)

    Article  Google Scholar 

  27. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Appl. Phys. A 108, 911 (2012)

    Article  Google Scholar 

  28. N.F. Mott, Philos. Mag. 19, 835 (1969)

    Article  Google Scholar 

  29. N.F. Mott, J. Non-Cryst. Solids 8, 191 (1972)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)

    Google Scholar 

  31. S. Ramchandar Rao, M. Nagabhooshanam, V.Hari Babu, Cryst. Res. Technol. 25, 55 (2006)

    Google Scholar 

  32. M. Thamilselvan, K. Premnazeer, D. Mangalaraj, Sa.K. Narayandass, J. Yi, Cryst. Res. Technol. 39, 137 (2004)

    Article  Google Scholar 

  33. C.H. Seager, G.E. Pike, Phys. Rev. B 10, 1435 (1974)

    Article  Google Scholar 

  34. A.F. Qasrawi, M.M. Shukri Ahmed, Cryst. Res. Technol. 41, 364 (2006)

    Article  Google Scholar 

  35. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1970)

    Google Scholar 

  36. T.G. Abdel-Malik, R.M. Abdel-Latif, A. Sawaby, S.M. Ahmed, J. Appl. Sci. Res. 4, 331 (2008)

    Google Scholar 

  37. N.F. Mott, E.A. Davis, Philos. Mag. 22, 903 (1970)

    Article  Google Scholar 

  38. M.G. Syed Ahamed Basheer, K.S. Rajni, V.S. Vidhya, V. Swaminathan, A. Thayumanavan, K.R. Murali, M. Jayachandran, Cryst. Res. Technol. 46, 261 (2011)

    Article  Google Scholar 

  39. A.A. Yadav, E.U. Masumdar, Mater. Res. Bull. 45, 1455 (2010)

    Article  Google Scholar 

  40. J. Kocka, M. Vanecek, A. Triska, Amorphous Silicon and Related Materials (World Scientific, Singapore, 1988). p. 297

    Google Scholar 

  41. J. Willekens, M. Brinza, T. Aernouts, J. Poortmans, G.J. Adriaenssens, ‎J. Non-Cryst. Solids 352, 1675 (2006)

    Article  Google Scholar 

  42. P. Sládek, P. Sťahel, P.R.I. Cabarrocas, P. Morin, Philos. Mag. B 77, 1049 (1998)

    Article  Google Scholar 

  43. A. Madan, M.P. Shaw, Physics and Applications of Amorphous Semiconductors (Academic Press, New York, 1988), p. 161

    Book  Google Scholar 

  44. M. Vanecek, J. Kocka, J. Stuchlik, A. Triska, Solid State Commun. 39, 1199 (1981)

    Article  Google Scholar 

  45. A. Tyagi, O.S. Panwar, B.S. Satyanarayan, P.N. Dixit, T. Seth, R. Bhattacharyya, V.V. Shah, Thin Solid Films 203, 251 (1991)

    Article  Google Scholar 

  46. M. Vanecek, A. Abraham, O. Stika, J. Stuchlik, J. Kocka, Phys. Stat. Sol. A 83, 617 (1984)

    Article  Google Scholar 

  47. H. Hata, S. Wagner, Amorphous Silicon Technology. (Materials Research Society, Pittsburg, 1991). p. 611

    Google Scholar 

  48. F. Wang, T. Fischer, T. Muschik, R. Schwarz, Philos. Mag. B 68, 737 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Poonam, Saini, G.S.S. et al. A comparative study of transport properties of copper doped cadmium selenide thin films at two dopant concentrations. J Mater Sci: Mater Electron 29, 9596–9604 (2018). https://doi.org/10.1007/s10854-018-8995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8995-2

Navigation