Skip to main content
Log in

Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Acetic acid vapor thin film gas sensor was developed by synthesizing Mg-doped ZnO nanoparticles using a low cost and facile sol–gel route and were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence analysis. Morphological characterizations showed the formation of well-defined and highly crystalline ZnO nanoparticles on Si(100)/SiO2 substrate. Gas sensing characterization of dip coated Mg-doped ZnO thin films were performed in temperature range of 150–400 °C at different acetic acid vapor concentrations. At 300 °C, the sensitivity for pure ZnO, Zn0.98Mg0.02O and Zn0.94Mg0.06O samples at concentration of 200 ppm of acetic acid were 124, 78 and 67%, respectively. The highest sensitivity for Zn0.96Mg0.04O sample was 136% at the same vapor concentration and temperature. It showed a fast response time and recovery time (145 and 110 s, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Wang, Y. Kang, X. Liu et al., ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)

    Article  Google Scholar 

  2. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3

    Article  Google Scholar 

  3. R.K. Malik, R. Khanna, G.L. Sharma et al., Hydrogen sensing properties of copper-doped zinc oxide thin films. IEEE Sens. J. 15, 7021–7028 (2015)

    Article  Google Scholar 

  4. B. Mandal, R. Singh, S. Mukherjee, Highly selective and sensitive methanol sensor using rose-like ZnO microcube and MoO3 micrograss based composite. IEEE Sens. J. 18, 2659–2666 (2018)

    Article  Google Scholar 

  5. J. Chen, X. Pan, F. Boussaid et al., Breath level acetone discrimination through temperature modulation of a hierarchical ZnO gas sensor. IEEE Sens. Lett. 1, 1–4 (2017)

    Article  Google Scholar 

  6. W. Wang, Y. Tian, X. Wang et al., Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J. Mater. Sci. 48, 3232–3238 (2013)

    Article  Google Scholar 

  7. J. Hu, F. Gao, S. Sang et al., Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)

    Article  Google Scholar 

  8. A. Hastir, R.L. Opila, N. Kohli et al., Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)

    Article  Google Scholar 

  9. B. Yuliarto, M.F. Ramadhani, N.L.W. Septiani et al., Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time. J. Mater. Sci. 52, 4543–4554 (2017)

    Article  Google Scholar 

  10. M.T. Hosseinnejad, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Growth, characterization, and investigation of H2 gas sensing performance of Al-doped ZnO thin films synthesized by plasma focus device. J. Mater. Sci. Mater. Electron. 27, 11308–11318 (2016)

    Article  Google Scholar 

  11. M. Hjiri, N. Zahmouli, R. Dhahri et al., Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 28, 9667–9674 (2017)

    Article  Google Scholar 

  12. G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  13. G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)

    Article  Google Scholar 

  14. Q. Jia, H. Ji, Y. Zhang et al., Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)

    Article  Google Scholar 

  15. X. Wang, F. Sun, Y. Duan et al., Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)

    Article  Google Scholar 

  16. M.-R. Yu, R.-J. Wu, M. Chavali, Effect of “Pt”loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens. Actuators B 153, 321–328 (2011)

    Article  Google Scholar 

  17. P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci. 40, 4383–4385 (2005)

    Article  Google Scholar 

  18. S. Christoulakis, M. Suchea, M. Katharakis et al., ZnO nanostructured transparent thin films by PLD. Rev. Adv. Mater. Sci. 10, 331–334 (2005)

    Google Scholar 

  19. M. Azuma, M. Ichimura, Fabrication of ZnO thin films by the photochemical deposition method. Mater. Res. Bull. 43, 3537–3542 (2008)

    Article  Google Scholar 

  20. S.P. Wang, C.X. Shan, B. Yao et al., Electrical and optical properties of ZnO films grown by molecular beam epitaxy. Appl. Surf. Sci. 255, 4913–4915 (2009)

    Article  Google Scholar 

  21. R. Yousefi, F. Jamali-Sheini, A.K. Zak, A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions. Chem. Vap. Depos. 18, 215–220 (2012)

    Article  Google Scholar 

  22. M. Dwivedi, J. Bhargava, A. Sharma et al., CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. J. 14, 1577–1582 (2014)

    Article  Google Scholar 

  23. M. Kashif, Y. Al-Douri, U. Hashim et al., Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. Micro Nano Lett. 7, 163–167 (2012)

    Article  Google Scholar 

  24. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, Oxford, 2011)

    Google Scholar 

  25. T.T. Trinh, N.H. Tu, H.H. Le et al., Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sens. Actuators B 152, 73–81 (2011)

    Article  Google Scholar 

  26. M.K. Chakravarthi, B. Bharath, DIP coated thick films of ZNO and its ethanol sensing properties, in 8th International Symposium on Mechatronics and its Applications (ISMA), pp 1–5, 2012

  27. X.L. Cheng, H. Zhao, L.H. Huo et al., ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102, 248–252 (2004)

    Article  Google Scholar 

  28. R.S. Ganesh, E. Durgadevi, M. Navaneethan et al., Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)

    Article  Google Scholar 

  29. R. Zhang, W. Pang, Z. Feng et al., Enabling selectivity and fast recovery of ZnO nanowire gas sensors through resistive switching. Sens. Actuators B 238, 357–363 (2017)

    Article  Google Scholar 

  30. D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co: ZnO nanorods and its mechanism. Sens. Actuators B 243, 475–483 (2017)

    Article  Google Scholar 

  31. F. Meng, N. Hou, Z. Jin et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B 219, 209–217 (2015)

    Article  Google Scholar 

  32. F. Meng, H. Zheng, Y. Sun et al., UV-activated room temperature single-sheet ZnO gas sensor. Micro Nano Lett. 12, 813–817 (2017)

    Article  Google Scholar 

  33. C.B. Jacobs, A.B. Maksov, E.S. Muckley et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017)

    Article  Google Scholar 

  34. J. Gong, Y. Li, X. Chai et al., UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114, 1293–1298 (2009)

    Article  Google Scholar 

  35. E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42, 416–432 (2017)

    Article  Google Scholar 

  36. M. Hjiri, R. Dhahri, K. Omri et al., Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process. 27, 319–325 (2014). https://doi.org/10.1016/j.mssp.2014.07.009

    Article  Google Scholar 

  37. L. Giancaterini, C. Cantalini, M. Cittadini et al., Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol–gel-based ZnO thin-film sensors. IEEE Sens. J. 15, 1068–1076 (2015)

    Article  Google Scholar 

  38. S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015)

    Article  Google Scholar 

  39. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B 152, 155–161 (2011)

    Article  Google Scholar 

  40. S. Wei, Y. Yu, M. Zhou, CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 64, 2284–2286 (2010)

    Article  Google Scholar 

  41. C. Dong, X. Liu, B. Han et al., Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B 224, 193–200 (2016)

    Article  Google Scholar 

  42. J. Guo, J. Zhang, M. Zhu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B 199, 339–345 (2014)

    Article  Google Scholar 

  43. F. Meng, H. Zheng, Y. Sun et al., Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017)

    Article  Google Scholar 

  44. F. Meng, N. Hou, Z. Jin et al., Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol. Sens. Actuators B 209, 975–982 (2015). https://doi.org/10.1016/j.snb.2014.12.078

    Article  Google Scholar 

  45. Q. Deng, S. Gao, T. Lei et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B 247, 903–915 (2017)

    Article  Google Scholar 

  46. H. Gong, J.Q. Hu, J.H. Wang et al., Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115, 247–251 (2006)

    Article  Google Scholar 

  47. A.J. Chen, X.M. Wu, Z.D. Sha et al., Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D 39, 4762 (2006)

    Article  Google Scholar 

  48. S.-Y. Kuo, W.-C. Chen, F.-I. Lai et al., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)

    Article  Google Scholar 

  49. R.F. Dezfuly, R. Yousefi, F. Jamali-Sheini, Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455–7461 (2016)

    Article  Google Scholar 

  50. C.H. Kwak, H.S. Woo, F. Abdel-Hady et al., Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuators B 223, 527–534 (2016). https://doi.org/10.1016/j.snb.2015.09.120

    Article  Google Scholar 

  51. J. Xu, J. Han, Y. Zhang et al., Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B 132, 334–339 (2008). https://doi.org/10.1016/j.snb.2008.01.062

    Article  Google Scholar 

  52. C. Jin, S. Park, H. Kim et al., CO gas-sensor based on Pt-functionalized Mg-doped ZnO nanowires. Bull. Korean Chem. Soc. 33, 1993–1997 (2012)

    Article  Google Scholar 

  53. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016). https://doi.org/10.1016/j.jallcom.2016.07.050

    Article  Google Scholar 

  54. W. Chebil, M.A. Boukadhaba, I. Madhi et al., Structural, optical and NO2 gas sensing properties of ZnMgO thin films prepared by the sol gel method. Phys. B 505, 9–16 (2017). https://doi.org/10.1016/j.physb.2016.10.028

    Article  Google Scholar 

  55. K. Karthick, D. Srinivasan, J.B. Christopher, Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci. Mater. Electron. 28, 11979–11986 (2017)

    Article  Google Scholar 

  56. K. Vijayalakshmi, K. Karthick, Growth of highly c-axis oriented Mg:ZnO nanorods on Al2O3 substrate towards high-performance H2 sensing. Int. J. Hydrogen Energy 39, 7165–7172 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.123

    Article  Google Scholar 

  57. Y. Liu, T. Hang, Y. Xie et al., Effect of Mg doping on the hydrogen-sensing characteristics of ZnO thin films. Sens. Actuators B 160, 266–270 (2011). https://doi.org/10.1016/j.snb.2011.07.046

    Article  Google Scholar 

  58. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)

    Article  Google Scholar 

  59. J. Zhang, F. Liao, Y. Zhu et al., Visible-light-enhanced gas sensing of CdSxSe1−x nanoribbons for acetic acid at room temperature. Sens. Actuators B 215, 497–503 (2015)

    Article  Google Scholar 

  60. C. Wang, S. Ma, A. Sun et al., Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuators B 193, 326–333 (2014)

    Article  Google Scholar 

  61. X.B. Li, Q.Q. Zhang, S.Y. Ma et al., Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping. Sens. Actuators B 195, 526–533 (2014)

    Article  Google Scholar 

  62. Z. Jiao, M. Wu, Z. Qin et al., Nano zinc ferrite acetic acid gas sensor for smuggled drug detection in southern China. Sens. Transducers Mag. 37, 24–29 (2003)

    Google Scholar 

  63. N. Al-Hardan, M.J. Abdullah, A.A. Aziz, H. Ahmad, ZnO gas sensor for testing vinegar acid concentrations. Sains Malays. 40, 67–70 (2011)

    Google Scholar 

  64. A. Sinha, S. Chakrabarti, B. Chaudhuri et al., Oxidative degradation of strong acetic acid liquor in wastewater emanating from hazardous industries. Ind. Eng. Chem. Res. 46, 3101–3107 (2007)

    Article  Google Scholar 

  65. R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi et al., Experimental and theoretical study of enhanced photocatalytic activity of Mg-doped ZnO NPs and ZnO/rGO nanocomposites. Chem.-Asian J. 13, 194–203 (2018). https://doi.org/10.1002/asia.201701423

    Article  Google Scholar 

  66. J.H. Li, Y.C. Liu, C.L. Shao et al., Effects of thermal annealing on the structural and optical properties of MgxZn1−xO nanocrystals. J. Colloid Interface Sci. 283, 513–517 (2005)

    Article  Google Scholar 

  67. G. Ning, X. Zhao, J. Li, Structure and optical properties of MgxZn1−xO nanoparticles prepared by sol–gel method. Opt. Mater. 27, 1–5 (2004)

    Article  Google Scholar 

  68. K. Vijayalakshmi, K. Karthick, Influence of annealing on the photoluminescence of nanocrystalline ZnO synthesized by microwave processing. Philos. Mag. Lett. 92, 710–717 (2012)

    Article  Google Scholar 

  69. R. Dhahri, M. Hjiri, L. El Mir et al., CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Devices 2, 34–40 (2017)

    Article  Google Scholar 

  70. A.S.M. Iftekhar Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015). https://doi.org/10.1016/j.snb.2014.10.091

    Article  Google Scholar 

  71. M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering. J. Am. Ceram. Soc. 59, 4–8 (1976)

    Article  Google Scholar 

  72. A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)

    Article  Google Scholar 

  73. S. Fujitsu, K. Koumoto, H. Yanagida et al., Change in the oxidation state of the adsorbed oxygen equilibrated at 25 C on ZnO surface during room temperature annealing after rapid quenching. Jpn. J. Appl. Phys. 38, 1534 (1999)

    Article  Google Scholar 

  74. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  75. J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66, 277–279 (2000)

    Article  Google Scholar 

  76. M.A. Carpenter, S. Mathur, A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012)

    Google Scholar 

  77. D. Mishra, A. Srivastava, A. Srivastava, R.K. Shukla, Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl. Surf. Sci. 255, 2947–2950 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Karamdel.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorramshahi, V., Karamdel, J. & Yousefi, R. Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method. J Mater Sci: Mater Electron 29, 14679–14688 (2018). https://doi.org/10.1007/s10854-018-9604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9604-0

Navigation