Skip to main content

Advertisement

Log in

A simple method for characterizing mechanical property of nanowire arrays in atmospheric environment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An unique method based on atomic force microscopy (AFM) and resonance for accurately characterizing elastic modulus of nanowire (NW) arrays in atmospheric environment is demonstrated without destructing or manipulating the sample. By acquiring the topography images of the NW arrays under frequency tunable AC electric field through AFM noncontact scanning mode, the resonance frequency of NWs can be easily identified and elastic modulus of the NW arrays is further derived. The measurement mechanism is based on quantifying the AFM tip scanning depth in the spaces of NWs to achieve the information of vibration. For the first time, the elastic modulus of ZnO NWs synthesized by of hydrothermal method is measured to be 55.7 ± 8.3 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.H. Baughman, A.A. De Zakhidov, W.A. Heer, Science 297, 787 (2002)

    Article  Google Scholar 

  2. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)

    Article  Google Scholar 

  3. X.L. Feng, R.R. He, P.D. Yang, M.L. Roukes, Nano Lett. 2007, 7 (1953)

    Google Scholar 

  4. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  Google Scholar 

  5. X.D. Li, H.S. Gao, C.J. Murphy, K.K. Caswell, Nano Lett. 3, 1495 (2003)

    Article  Google Scholar 

  6. S.G. Nilsson, X. Borrise, L. Montelius, Appl. Phys. Lett. 85, 3555 (2004)

    Article  Google Scholar 

  7. B.W. Wen, J.E. Sader, J.J. Boland, Phys. Rev. Lett. 101, 175502 (2008)

    Article  Google Scholar 

  8. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 1997, 277 (1971)

    Google Scholar 

  9. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Nano Lett. 2005, 5 (1954)

    Google Scholar 

  10. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G. Andrew, D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 161 (1999)

    Article  Google Scholar 

  11. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)

    Article  Google Scholar 

  12. C.M. Jiang, W.L. Lu, J.H. Song, Nano Lett. 13, 111 (2013)

    Article  Google Scholar 

  13. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Science 283, 1513 (1999)

    Article  Google Scholar 

  14. Y.H. Huang, X.D. Bai, Y. Zhang, J. Phys. Condens. Matter 18, 179 (2006)

    Article  Google Scholar 

  15. Q. Qin, F. Xu, Y. Cao, P.I. Ro, Y. Zhu, Small 8, 2571 (2012)

    Article  Google Scholar 

  16. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  17. Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Nano Lett. 9, 3934 (2009)

    Article  Google Scholar 

  18. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nat. 381, 678 (1996)

    Article  Google Scholar 

  19. G. Binnig, C.F. Quate, Phys. Rev. Lett. 56, 930 (1986)

    Article  Google Scholar 

  20. P. Hawkes, The Beginnings of Electron Microscopy (Academic Press, London, 1985)

    Google Scholar 

  21. S. Zhang, Y. Shen, H. Fang, S. Xu, J.H. Song, Z.L.J. Wang, Mater. Chem. 20, 10606 (2010)

    Article  Google Scholar 

  22. C.F. Pan et al., Nat. Photon. 7, 752 (2013)

    Article  Google Scholar 

  23. W.Z. Wu, X.N. Wen, Z.L. Wang, Science 340, 952 (2013)

    Article  Google Scholar 

  24. Lee, K. H. Bae, Y. J. Byeon, S. H. Nanowires Science and Technology, InTech, (2010), ISBN 978-953-7619-89-3

Download references

Acknowledgments

This study was supported by Jiangsu Higher Vocational Education Teacher Training Center(CN) (Grant No. 2018GRGDYX101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Tian, H., Wu, H. et al. A simple method for characterizing mechanical property of nanowire arrays in atmospheric environment. J Mater Sci: Mater Electron 30, 9938–9944 (2019). https://doi.org/10.1007/s10854-019-01332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01332-x

Navigation