Skip to main content
Log in

Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here we report a solvothermal–hydrothermal based method for the synthesis of spherical chromium oxide (Cr2O3) nanoparticles in 1-butyl-3-methyl imidazolium bromide ([BMIM]+[Br]) and water (1:1 V/V) as a solvent. Electrochemical glucose sensing was performed by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The working electrode, glassy carbon electrode (GCE) was modified by using the synthesized Cr2O3 nanoparticles. The performance of the Cr2O3 nanoparticles modified GCE for glucose sensing is found to be highly sensitive with the limits of detection 1.47 × 10−4 M (LOD) and limits of quantification (LOQ) 4.91 × 10−4 M. The linear range of glucose detection is determined to be 2.78 × 10−4 M to 1.94 × 10−3 M. The sensitivity of the modified GCE for glucose is determined to be 2.25 × 10−2 A L mol−1 cm−2. From DPV, LOD corresponds to 1.08 × 10−4 M while the LOQ is determined at 3.60 × 10−4 M. The linear range of glucose detection by DPV is lower, 8.33 × 10−4 M to 1.94 × 10−3 M than that of CV. The glucose sensitivity also improves to 3.07 × 10−3 A L mol−1 cm−2 by DPV technique. Finally, the Cr2O3 nanoparticles modified GCE is used successfully to determine the glucose contents in human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Heller, B. Feldman, Chem. Rev. 108, 2482 (2008)

    Article  Google Scholar 

  2. S.B. Bambot, J.R. Lakowicz, G. Rao, Biotechnology 13, 106 (1995)

    Google Scholar 

  3. T.J. O’Shea, S.M. Lunte, W.R. LaCourse, Anal. Chem. 65, 948 (1993)

    Article  Google Scholar 

  4. S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)

    Article  Google Scholar 

  5. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2008)

    Article  Google Scholar 

  6. J. Liu, Y. Lu, J. Am. Chem. Soc. 125, 6642 (2003)

    Article  Google Scholar 

  7. Y. Miwa, M. Nishizawa, T. Matsue, I. Uchida, Bull. Chem. Soc. Jpn. 67, 2864 (1994)

    Article  Google Scholar 

  8. S. Mansouri, J.S. Schultz, Nat. Biotechnol. 2, 885 (1984)

    Article  Google Scholar 

  9. J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, J. Birch. Biosens. Bioelectron. 20, 2555 (2005)

    Article  Google Scholar 

  10. J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13, 983 (2001)

    Article  Google Scholar 

  11. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Microchim. Acta 180, 161 (2013)

    Article  Google Scholar 

  12. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, RSC Adv. 3, 4473 (2013)

    Article  Google Scholar 

  13. Y. Iu, H. Teng, H. Hou, T. You, Biosens. Bioelectron. 24, 3329 (2009)

    Article  Google Scholar 

  14. H. Zhu, L. Li, Z. Wei, W.Z. Shao, X. C. Xianjian. J. Mater. Chem. 214, 7333 (2009)

    Google Scholar 

  15. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis 22, 1027 (2010)

    Article  Google Scholar 

  16. J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. AlYoubi, X. Sun, Nanoscale. 5, 8921 (2013)

    Article  Google Scholar 

  17. H. Lee, S.W. Yoon, E.J. Kim, J. Park, Nano Lett. 7, 778 (2007)

    Article  Google Scholar 

  18. P.C. Pandey, J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases. 84, 2259 (1988)

    Google Scholar 

  19. S. Liu, B. Yu, T. Zhang, Electrochim. Acta. 102, 104 (2013)

    Article  Google Scholar 

  20. M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, Ionics. 23(6), 1553 (2017)

    Article  Google Scholar 

  21. M. Chowdhury, F. Cummings, M. Kebede, V. Fester, Electroanalysis 29, 578 (2017)

    Article  Google Scholar 

  22. L.C. Jiang, W.D. Zhang, Biosens. Bioelectron. 25, 1402 (2010)

    Article  Google Scholar 

  23. A. Parvin, S. Saeed, I. Azamzad, J. Electroanal. Chem. 823, 505 (2018)

    Article  Google Scholar 

  24. S. Deng, H. Li, S. Li, Y. Zhang, J. Mol. Catal. Chem. 268, 169 (2007)

    Article  Google Scholar 

  25. D.W. Kim, S.I. Shin, J.D. Lee, S.G. Oh, Mater. Lett. 58, 1894 (2004)

    Article  Google Scholar 

  26. X. Hou, K.L. Choy, Thin Solid Films. 516, 8620 (2008)

    Article  Google Scholar 

  27. X. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin, A.A. Volinsky, Thin Solid Films. 517, 1922 (2009)

    Article  Google Scholar 

  28. P. Jayamurugan, R. Mariappan, K. Premnazeer, S. Ashokan, Y.V. Rao, N.V.S.S. Rao, C. Shanmugapriya, Appl. Sens. Imaging 18, 18 (2017)

    Article  Google Scholar 

  29. P.M. Kharade, S.G. Chavana, S.S. Mane, P.B. Joshi, D.J. Salunkhe, J. Chin. Adv. Mater. Soc. 4(1), 1 (2015)

    Article  Google Scholar 

  30. A.L. Rashedi, M. Farooqui, G. Rabbani, Oriental J. Chem. 4, 2203 (2018)

    Article  Google Scholar 

  31. A.B.C. Ekwealor, Digest J. Nanomater. Biostruc. 9, 423 (2014)

    Google Scholar 

  32. H. Sun, L. Wang, D. Chu, Z. Ma, A. Wang, Mater. Lett. 140, 35 (2015)

    Article  Google Scholar 

  33. J. Dupont, C.S. Consorti, P.A. Suarez, R.F. de Souza, Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org. Synth. 10, 184 (2004)

    Google Scholar 

  34. A. Alaa, A. Aljabali, J. Barclay, N. Jule, B.P. George, A. Lomonossoffa, D.J. Evans, Dalton Trans. 39, 75 (2010)

    Google Scholar 

  35. J.O. Bockris, A.K.N. Reddy, Modern Electrochem. 2, 1 (1973). https://doi.org/10.1007/978-1-4613-4560-2

    Google Scholar 

  36. M. Roy, S. Ghosh, M. Naskar, Mater. Chem. Phys. 159, 101 (2015)

    Article  Google Scholar 

  37. M.M. Abdullah, F.M. Rajab, S.M. Al-Abbas, AIP Adv. 4, 027121 (2014)

    Article  Google Scholar 

  38. T. Ivanova, K. Gesheva, A. Cziraki, A. Szekeres, E. Vlaikova, J. Phys. Conf. Ser. 113, 1 (2008)

    Article  Google Scholar 

  39. S. Rakesh, A. Netkal, M. Gowda, Modern Res. Catal. 2, 127 (2013)

    Article  Google Scholar 

  40. T. Rajkumar, G. Rao, Mater. Chem. Phys. 112, 853 (2008)

    Article  Google Scholar 

  41. L.D. Zhang, C.M. Mo, W.L. Cai, G. Chen, Nanostruct. Mater. 9, 563 (1997)

    Article  Google Scholar 

  42. K. Reddaiah, T. Reddy, P. Raghu, J. Electroanal. Chem. 682, 164 (2012)

    Article  Google Scholar 

  43. T. Reddy, M. Sreedhar, S.J. Reddy, J. Pharm. Biomed. Anal. 31, 811 (2003)

    Article  Google Scholar 

  44. Y. Ni, J. Xu, Q. Liang, S. Shao, Sens. Actuat. Chem. 250, 491 (2017)

    Article  Google Scholar 

  45. L. Rui, L. Xiongjun, W. Hui, W. Yuan, K.C. Chan, L. Zhaoping, Electrochimica Acta. 299, 470 (2019)

    Article  Google Scholar 

  46. S.K. Maji, A.K. Dutta, G.R. Bhadu, P. Paul, A. Mondal, B. Adhikary, J. Mater. Chem. B. 1, 4127 (2013)

    Article  Google Scholar 

  47. J. Chen, W.D. Zhang, J.S. Ye, Electrochem. Commun. 10, 1268 (2008)

    Article  Google Scholar 

  48. S. Park, H. Boo, T. Dong, Chung. Analytica. Chimica. Acta. 556, 46 (2006)

    Article  Google Scholar 

  49. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 2001)

    Google Scholar 

Download references

Acknowledgement

BBK and SNT are thankful to director of SNST, Shivaji University Kolhapur (Grant No. SU/C & U.D. Section/95/1391) for providing instrumentation facility. SNT thanks BCUD/IRA SUK Kolhapur for minor research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaji N. Tayade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, B.B., Naikwade, M., Garadkar, K.M. et al. Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing. J Mater Sci: Mater Electron 30, 13984–13993 (2019). https://doi.org/10.1007/s10854-019-01748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01748-5

Navigation