Skip to main content

Advertisement

Log in

Effects of electroless nickel plating method for low temperature joining ZnS ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS has been widely used as a material for windows in optical systems. This is because it has a good transmittance in both mid-infrared and far-infrared bands, a stable chemical performance, a moderate linear thermal expansion coefficient and an adequate mechanical strength. ZnS windows need the so-called splice technology implementation to satisfy the integrity of large size applications or special surface structures. Traditional ZnS light windows are mechanically assembled with metal frames. However, the strength of the large-size ZnS formed by mechanical assembly is low. Consequently, an adequate joining technology is needed to overcome the low splice strength and improve the mechanical strength of the assembly. In this paper, we proposed a pre-metallization method by using an electroless plating of Ni on ZnS surface. Subsequently, a low temperature joining by using a Sn63Pb37 solder was completed. By a study of the process and the corresponding mechanism of the electroless nickel plating, a Ni–P layer with a controllable P content and thickness has been formed, and a smooth surface and a good combination with ZnS has been obtained. The microstructure of the Sn63Pb37 and Ni–P/ZnS was analyzed, and the phase composition and element distribution within the joint were determined. The influences of process parameters on the microstructures of the joints have been explored, including the brazing temperature, the time of thermal energy preservation and the thickness of the coating. Finally, the shear strengths of joints under different imposed parameters were optimized leading to the peak soldering temperature of 250 °C and the dwell at the peak of 1 min. The fractures were along Ni–P/ZnS ceramic interface, therefore, a successfully low temperature joining process on ZnS ceramics using Ni–P plating and Sn63Pb37 solder had been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. E. Axinte, Glasses as engineering materials: a review. Mater. Des. 32(4), 1717–1732 (2011)

    Article  Google Scholar 

  2. A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105(9), 4 (2009)

    Article  Google Scholar 

  3. Z.Y. Fang, et al., Micromorphologies and defects in CVD ZnS and ZnSe, in Key Engineering Materials (Trans Tech Publications, Vol. 280, 2005)

  4. Y. Liu, Y. He, Z. Yuan et al., Numerical and experimental study on thermal shock damage of CVD ZnS infrared window material. J. Alloy. Compd. 589(589), 101–108 (2014)

    Google Scholar 

  5. A.F. Shchurov, E.M. Gavrishchuk, V.B. Ikonnikov et al., Effect of hot isostatic pressing on the elastic and optical properties of polycrystalline CVD ZnS. Inorg. Mater. 40(4), 336–339 (2004)

    Article  Google Scholar 

  6. I.P. Shcherbakov, A.A. Dunaev, A.E. Chmel, Effect of abrasion on the crystal structure of ZnS and ZnSe ceramics. Inorg. Mater. 54(10), 1051–1054 (2018)

    Article  Google Scholar 

  7. F. Kurnia, Y.H. Ng, Y. Tang et al., ZnS thin films for visible-light active photoelectrodes: effect of film morphology and crystal structure. Cryst. Growth Des. 16(5), 2461–2465 (2016)

    Article  Google Scholar 

  8. F. Wang, X. Zhang, Y. Lin et al., Structural coloration pigments based on carbon modified ZnS@ SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability. ACS Appl. Mater. Interfaces. 8(7), 5009–5016 (2016)

    Article  Google Scholar 

  9. R. Banerjee, Y.P. Varshni, Lattice dynamics and thermodynamic properties of β-ZnS, GaP and β-SiC. J. Phys. Soc. Jpn. 30(4), 1015–1021 (1971)

    Article  Google Scholar 

  10. N.I. Khinev, G.M. Grebenyuk, V.G. Kanibolotskii, Effect of heat treatment on α-ZnS and β-ZnS transformations. Sov. Phys. J. 17(6), 816–819 (1974)

    Article  Google Scholar 

  11. S.V. Nistor, M. Stefan, L.C. Nistor et al., Distribution and interaction of Mn2+ ions incorporated in cubic ZnS quantum dots over a broad concentration range. J. Alloy. Compd. 662, 193–199 (2016)

    Article  Google Scholar 

  12. P.I. Chou, D.Q. Ng, I.C. Li et al., Effects of dissolved oxygen, pH, salinity and humic acid on the release of metal ions from PbS, CuS and ZnS during a simulated storm event. Sci. Total Environ. 624, 1401–1410 (2018)

    Article  Google Scholar 

  13. B.H. Hwang, H.B. Xu, S.J. Park et al., Structural and optical properties of solvothermally synthesized ZnS nano-materials using Na2S·9H2O and ZnSO4·7H2O precursors. Ceram. Int. 42(10), 11700–11708 (2016)

    Article  Google Scholar 

  14. S.Y. Chang, T.H. Chuang, L.C. Tsao et al., Active soldering of ZnS–SiO2 sputtering targets to copper backing plates using an Sn3·5Ag4Ti (Ce, Ga) filler metal. J. Mater. Process. Technol. 202(1–3), 22–26 (2008)

    Article  Google Scholar 

  15. R. Koleňák, P. Šebo, M. Provazník et al., Shear strength and wettability of active Sn3·5Ag4Ti (Ce, Ga) solder on Al2O3 ceramics. Mater. Des. 32(7), 3997–4003 (2011)

    Article  Google Scholar 

  16. G. Sala, Advanced metal–ceramic joining techniques for orthopaedic applications, in Joining and Assembly of Medical Materials and Devices (Woodhead Publishing, Sawston, 2013), pp. 407–448

  17. C.A. Loto, Electroless nickel plating: a review. Silicon 8(2), 177–186 (2016)

    Article  Google Scholar 

  18. C. Gao, L. Dai, W. Meng et al., Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate. Appl. Surf. Sci. 392, 912–919 (2017)

    Article  Google Scholar 

  19. K. DeHority, N. Budin, S.S. Hilston et al., Deposition of nickel on electrodeposited Cu2O films at potentials more positive than the nernst potential of Ni2+/Ni0. J. Electrochem. Soc. 164(9), H615–H620 (2017)

    Article  Google Scholar 

  20. M. Ranjbar, M.A. Taher, A. Sam, Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2, 6-pyridinedicarboxylic acid ammonium. J. Mater. Sci. 27(2), 1449–1456 (2016)

    Google Scholar 

  21. M. Ranjbar, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani et al., Solvothermal synthesis and characterization of hollow sphere-LIKE ZnS/ZnAl2S4 nanocomposites. J. Inorg. Organomet. Polym Mater. 22(5), 1122–1127 (2012)

    Article  Google Scholar 

  22. P. Rajaei, M. Ranjbar, Synthesis and characterization of zinc oxide nanostructures by green capping agent and its photocatalytic degradation of methylene blue (MB). J. Mater. Sci. 27(2), 1708–1712 (2016)

    Google Scholar 

  23. C. Li, X. Zhang, Y. Chen et al., Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD; digital image correlation (DIC) and image based modelling. Acta Mater. 132, 1–12 (2017)

    Article  Google Scholar 

  24. C. Li, S.D.M. Jacques, Y. Chen et al., Precise strain profile measurement as a function of depth in thermal barrier coatings using high energy synchrotron X-rays. Scr. Mater. 113, 122–126 (2016)

    Article  Google Scholar 

  25. C. Li, X. Si, L. Chen et al., Non-destructive measurement of residual stress distribution as a function of depth in sapphire/Ti6Al4 V brazing joint via Raman spectra. Ceram. Int. 45(3), 3284–3289 (2019)

    Article  Google Scholar 

  26. H. Bian, Y. Song, D. Liu, et al., Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal. Chin. J. Aeronaut. (2019)

  27. H. Bian, X. Song, S. Hu et al., Microstructure evolution and mechanical properties of titanium/alumina brazed joints for medical implants. Metals 9(6), 644 (2019)

    Article  Google Scholar 

  28. V.N. Kuleshov, N.V. Kuleshov, S.A. Grigoriev et al., Development and characterization of new nickel coatings for application in alkaline water electrolysis. Int. J. Hydrog. Energy 41(1), 36–45 (2016)

    Article  Google Scholar 

  29. B. Attard, A. Leyland, A. Matthews et al., Improving the surface characteristics of Ti–6Al–4V and Ti metal 834 using PIRAC nitriding treatments. Surf. Coat. Technol. 339, 208–223 (2018)

    Article  Google Scholar 

  30. J.N. Pang, S.W. Jiang, H. Lin et al., Significance of sensitization process in electroless deposition of Ni on nanosized Al2O3 powders. Ceram. Int. 42(3), 4491–4497 (2016)

    Article  Google Scholar 

  31. A. Kaewvilai, R. Tanathakorn, A. Laobuthee et al., Electroless copper plating on nano-silver activated glass substrate: a single-step activation. Surf. Coat. Technol. 319, 260–266 (2017)

    Article  Google Scholar 

  32. F. Huang, H. Zhang, J.F. Banfield, Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3(3), 373–378 (2003)

    Article  Google Scholar 

  33. J. Huang, Z. Sun, F. Zhou et al., Method for electroless nickel plating on poly (ethylene terephthalate) substrates and through holes modified with primer. J. Mater. Sci. 28(15), 10974–10980 (2017)

    Google Scholar 

  34. J. Murata, K. Yodogawa, K. Ban, Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane: CeO2 core–shell particles. Int. J. Mach. Tools Manuf. 114, 1–7 (2017)

    Article  Google Scholar 

  35. B.S. Moon, S. Kim, H.E. Kim et al., Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Mater. Sci. Eng. C 73, 90–98 (2017)

    Article  Google Scholar 

  36. F.J. Pérez-Alonso, C. Adán, S. Rojas et al., Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions. Int. J. Hydrog. Energy 40(1), 51–61 (2015)

    Article  Google Scholar 

  37. Z. Huang, T.T. Nguyen, Y. Zhou, et al., A low temperature electroless nickel plating chemistry. Surf. Coat. Technol. (2019)

  38. C.S. Chang, K.H. Hou, M.D. Ger et al., Effects of annealing temperature on microstructure, surface roughness, mechanical and tribological properties of Ni–P and Ni–P/SiC films. Surf. Coat. Technol. 288, 135–143 (2016)

    Article  Google Scholar 

  39. D. Wang, L.B. Kong, M.C. Liu et al., Amorphous Ni–P materials for high performance pseudocapacitors. J. Power Sources 274, 1107–1113 (2015)

    Article  Google Scholar 

  40. J. Wojewoda-Budka, A. Wierzbicka-Miernik, L. Litynska-Dobrzynska et al., Microstructure characteristics and phase transformations of the Ni–P and Ni–P–Re electroless deposited coatings after heat treatment. Electrochim. Acta 209, 183–191 (2016)

    Article  Google Scholar 

  41. C. Xu, L. Chen, L. Yu et al., Effect of pickling processes on the microstructure and properties of electroless Ni–P coating on Mg–7.5 Li–2Zn–1Y alloy. Prog. Nat. Sci. 24(6), 655–662 (2014)

    Article  Google Scholar 

  42. M.K. Beyer, H. Clausen-Schaumann, Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105(8), 2921–2948 (2005)

    Article  Google Scholar 

  43. A.N. Alhazaa, T.I. Khan, Diffusion bonding of Al7075 to Ti–6Al–4V using Cu coatings and Sn–36 Ag–1Cu interlayers. J. Alloys Compd. 494(1–2), 351–358 (2010)

    Article  Google Scholar 

  44. Z. Shuye, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices. J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01790-3

    Google Scholar 

  45. Y.S. Yang, C.J. Yang, F.Y. Ouyang, Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration. J. Alloy. Compd. 674, 331–340 (2016)

    Article  Google Scholar 

  46. H.C. Cheng, R.Y. Hong, H.C. Hu et al., Role of plastic behaviors of Ni3Sn4 intermetallic compound on solder joint reliability. IEEE Trans. Dev. Mater. Reliab. 18(1), 18–26 (2018)

    Article  Google Scholar 

  47. H. Ji, M. Li, S. Ma et al., Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging. Mater. Des. 108, 590–596 (2016)

    Article  Google Scholar 

  48. T. Maeshima, H. Ikehata, K. Terui et al., Effect of Ni to the Cu substrate on the interfacial reaction with Sn–Cu solder. Mater. Des. 103, 106–113 (2016)

    Article  Google Scholar 

  49. A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by “National Natural Science Foundation of China (NSFC, Grant Number 51805115)”, “China Postdoctoral Science Foundation funded Project (2019M651280)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuye Zhang, Tiesong Lin or Peng He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Qi, X., Xu, X. et al. Effects of electroless nickel plating method for low temperature joining ZnS ceramics. J Mater Sci: Mater Electron 30, 15236–15249 (2019). https://doi.org/10.1007/s10854-019-01896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01896-8

Navigation