Skip to main content
Log in

Comparative study of wire bond degradation under power and mechanical accelerated tests

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Degradation of wire bonds under accelerated power cycling tests is compared to that caused by mechanical high-frequency cycling for commercial power devices. Using micro-sectioning approach and optical microscopy it is found that the bond fracture under the mechanical cycling follows the same tendencies as that found under power cycling. Results of shear tests of the mechanically cycled bonds also agree well with the bond cracking tendencies observed by optical microscopy investigations. It is found that reduction of contact area of the wire at the bond/metallization interface due to the crack development follows the Paris-Erdogan law, which defines the degradation rate leading to wire lift-off. The results obtained on mechanical cycling in the current work also show good agreement with literature data on wire bond fracture under power cycling proving that main mechanism for wire lift-off failure is related to the mechanical stress development at the interface with metallization layer. The carried out study also creates a potential to further develop a high-frequency mechanical cycling into an alternative for reliability analysis of wire bonds. However, more studies have to be performed to compare degradation mechanisms occuring under power and mechanical accelerated tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.S. Chauhan, A. Choubey, Z. Zhong, M.G. Pecht, Copper Wire Bonding (Springer, New York, 2014)

    Book  Google Scholar 

  2. L.F. Coffin Jr., Trans. ASME 76, 931–950 (1954)

    CAS  Google Scholar 

  3. S. S. Manson, in Proceedings of the Heat Transfer Symposium, University of Michigan 9–75, 1953

  4. M. Ciappa, Microelectron. Reliabil. 42, 653–667 (2002)

    Article  Google Scholar 

  5. M. Held; P. Jacob; G. Nicoletti; P. Scacco; M.-H. Poech, in Proceedings of the 2nd International Conference on Power Electronics and Drive Systems, 425–430, 1997. https://doi.org/10.1109/peds.1997.618742

  6. U. Scheuermann, R. Schmidt, Microelectron. Reliabil. 53, 1687–1691 (2013)

    Article  CAS  Google Scholar 

  7. G.H. Ebel, IEEE Trans. Reliabil. 47, 379–389 (1998)

    Article  Google Scholar 

  8. Z. Matic, V. Sruk, in Proceedings of 30th International Conference on Information Technology Interfaces, 745–750, 2008. https://doi.org/10.1109/iti.2008.4588504

  9. C. Hendriks, E. George, M. Osterman, M. Pecht, Reliability Characterisation of Electrical and Electronic Systems (Elsevier, Amsterdam, 2015), pp. 27–42

    Book  Google Scholar 

  10. H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J.B. Jacobsen, T. Kvisgaard, J. Landkildehus, IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 97–114 (2014)

    Article  Google Scholar 

  11. K.B. Pedersen, K. Pedersen, I.E.E.E. Trans, Power Electron. 31, 975–986 (2016)

    Article  Google Scholar 

  12. V.N. Popok, K.B. Pedersen, P.K. Kristensen, K. Pedersen, Microelectron. Reliabil. 58, 58–64 (2016)

    Article  CAS  Google Scholar 

  13. M. Brincker, K.B. Pedersen, P.K. Kristensen, V.N. Popok, Microelectron. Reliabil. 55, 1988–1991 (2015)

    Article  CAS  Google Scholar 

  14. M. Brincker, K.B. Pedersen, P.K. Kristensen, V.N. Popok, IEEE Trans. Compon. Packag. Manuf. Technol. 8(12), 2073–2080 (2018)

    Article  CAS  Google Scholar 

  15. B. Czerny, G. Khatibi, Microelectron. Reliabil. 58, 65–72 (2016)

    Article  CAS  Google Scholar 

  16. K.B. Pedersen, D.A. Nielsen, B. Czerny, G. Khatibi, F. Iannuzzo, V.N. Popok, K. Pedersen, Microelectron. Reliabil. 76–77, 373–377 (2017)

    Article  Google Scholar 

  17. B. Czerny, G. Khatibi, Tech. Mess. 85(4), 213–220 (2018)

    Article  Google Scholar 

  18. K.B. Pedersen, P.K. Kristensen, V. Popok, K. Pedersen, Microelectron. Reliabil. 53, 1422–1426 (2013)

    Article  CAS  Google Scholar 

  19. N. Pugno, M. Ciavarella, P. Cornetti, A. Carpinteri, J. Mech. Phys. Sol. 54(7), 1333–1349 (2006)

    Article  CAS  Google Scholar 

  20. K.B. Pedersen, D. Benning, P.K. Kristensen, V.N. Popok, K. Pedersen, J. Mater. Sci.: Mater. Electron. 25, 2863–2871 (2014)

    CAS  Google Scholar 

  21. L. Yang, P. Agyakwa, C.M. Johnson, IEEE Trans. Device Mater. Reliabil. 13, 9–17 (2013)

    Article  CAS  Google Scholar 

  22. Grams, J. Höfer, A. Middendorf, S. Schmitz, O. Wittler, K.-D. Lang, in Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulations and Experiments in Microelectronics and Microsystems, 2015. https://doi.org/10.1109/eurosime.2015.7103091

  23. K. Sasaki, N. Iwasa, T. Kurosu, K. Saito, Y. Koike, Y. Kamita, Y. Toyoda, in Proceedings of the 20th International Symposium on Power Semiconductor Devices and ICs, 181–184, 2008. https://doi.org/10.1109/ispsd.2008.4538928

Download references

Acknowledgements

This work is part of the activities run at the Center of Reliable Power Electronics (CORPE) in Denmark. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Popok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popok, V.N., Buhrkal-Donau, S., Czerny, B. et al. Comparative study of wire bond degradation under power and mechanical accelerated tests. J Mater Sci: Mater Electron 30, 17040–17045 (2019). https://doi.org/10.1007/s10854-019-02050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02050-0

Navigation