Skip to main content
Log in

Investigation on electrical characteristics of amorphous InZnSnMgO thin film transistors deposited at room-temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The bottom-gate top-contact amorphous InZnSnMgO (a-IZTMO) thin film transistors (TFTs) were fabricated by radio frequency (RF) magnetron sputtering in this paper. The X-ray diffraction pattern indicated the IZTMO thin film annealed at 350 °C was amorphous. The a-IZTMO thin film exhibited high transmittance in the visible range. The electrical performance of a-IZTMO TFTs were investigated which exhibited an excellent performance with a saturated mobility (μsat) of 36.6 cm2 v−1 s−1, subthreshold swing (SS) of 0.34 V dec−1, and threshold voltage (VTH) of 1.1 V. The bias stress stability of the a-IZTMO TFT was also investigated. The VTH shifted respectively about + 4.4 V and − 5.6 V after 3600 s of positive bias stress (PBS) and negative bias stress (NBS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488 (2004)

    Article  CAS  Google Scholar 

  2. H. Oh, S.-M. Yoon, M.K. Ryu, C.-S. Hwang, S. Yang, S.-H.K. Park, Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor. Appl. Phys. Lett. 97(18), 183502 (2010)

    Article  Google Scholar 

  3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 89(11), 112123 (2006)

    Article  Google Scholar 

  4. A. Olziersky, P. Barquinha, A. Vilà, L. Pereira, G. Gonçalves, E. Fortunato, R. Martins, J.R. Morante, Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors. J. Appl. Phys. 108(6), 064505 (2010)

    Article  Google Scholar 

  5. H. Zhang, Y. Wang, X. Zhang, C. Liu, Improvement of electrical characteristics and stability of IGZO TFT through surface single crystallization of IGZO film at room temperature. Semicond. Sci. Technol. 33(8), 085015 (2018)

    Article  Google Scholar 

  6. J.S. Lee, S. Chang, S.M. Koo, S.Y. Lee, High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron Device Lett. 31(3), 225–227 (2010)

    Article  CAS  Google Scholar 

  7. T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010)

    Article  Google Scholar 

  8. C. Wang, D. Tang, S. Han, P. Cao, X. Liu, Y. Zeng, W. Liu, F. Jia, W. Xu, D. Zhu, Low-voltage MgZnO thin film transistors with an amorphous Al2O3 gate insulator grown by pulsed laser deposition. Phys. Status Solidi A 215(11), 1700821 (2018)

    Article  Google Scholar 

  9. I.-H. Baek, J.J. Pyeon, S.H. Han, G.-Y. Lee, B.J. Choi, J.H. Han, T.-M. Chung, C.S. Hwang, S.K. Kim, High-performance thin film transistors of quaternary indium–zinc–tin oxide films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 11(16), 14892–14901 (2019)

    Article  CAS  Google Scholar 

  10. C.-H. Liang, J.L.H. Chau, C.-C. Yang, H.-H. Shih, Preparation of amorphous Ga–Sn–Zn–O semiconductor thin films by RF-sputtering method. Mater. Sci. Eng. B 183, 17–23 (2014)

    Article  CAS  Google Scholar 

  11. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012)

    Article  CAS  Google Scholar 

  12. J. Raja, K. Jang, C.P.T. Nguyen, J. Yi, N. Balaji, S.Q. Hussain, S. Chatterjee, Improvement of mobility in oxide-based thin film transistors: a brief review. Trans. Electr. Electron. Mater. 16(5), 234–240 (2015)

    Article  Google Scholar 

  13. J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012)

    Article  CAS  Google Scholar 

  14. T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2(1), 15–22 (2010)

    Article  Google Scholar 

  15. J.-Y. Noh, H. Kim, H.-H. Nahm, Y.-S. Kim, D. Hwan Kim, B.-D. Ahn, J.-H. Lim, G. Hee Kim, J.-H. Lee, J. Song, Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors. J. Appl. Phys. 113(18), 183706 (2013)

    Article  Google Scholar 

  16. I. Noviyana, A.D. Lestari, M. Putri, M.S. Won, J.S. Bae, Y.W. Heo, H.Y. Lee, High mobility thin film transistors based on amorphous indium zinc tin oxide. Materials 10(7), 702 (2017)

    Article  Google Scholar 

  17. M. Orita, H. Ohta, M. Hirano, S. Narushima, H. Hosono, Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): a Zn 4s conductor. Philos. Mag. B 81(5), 501–515 (2009)

    Article  Google Scholar 

  18. G.H. Kim, W.H. Jeong, B. Du Ahn, H.S. Shin, H.J. Kim, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.-Y. Lee, Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96(16), 163506 (2010)

    Article  Google Scholar 

  19. H.B. Kim, H.S. Lee, Effect of Mg addition on the electrical characteristics of solution-processed amorphous Mg–Zn–Sn–O thin film transistors. Thin Solid Films 550, 504–508 (2014)

    Article  CAS  Google Scholar 

  20. C.-J. Ku, Z. Duan, P.I. Reyes, Y. Lu, Y. Xu, C.-L. Hsueh, E. Garfunkel, Effects of Mg on the electrical characteristics and thermal stability of MgxZn1−xO thin film transistors. Appl. Phys. Lett. 98(12), 123511 (2011)

    Article  Google Scholar 

  21. C.-F. Hu, J.-Y. Feng, J. Zhou, X.-P. Qu, Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors. Appl. Phys. A 122(11), 941 (2016)

    Article  Google Scholar 

  22. B.-Y. Su, S.-Y. Chu, Y.-D. Juang, S.-Y. Liu, Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors. J. Alloys Compd. 580(12), 10–14 (2013)

    Article  CAS  Google Scholar 

  23. C.W. Ow-Yang, H.-Y. Yeom, D.C. Paine, Fabrication of transparent conducting amorphous Zn–Sn–In–O thin films by direct current magnetron sputtering. Thin Solid Films 516(10), 3105–3111 (2008)

    Article  CAS  Google Scholar 

  24. R. Navamathavan, C.K. Choi, E.-J. Yang, J.-H. Lim, D.-K. Hwang, S.-J. Park, Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering. Solid State Electron. 52(5), 813–816 (2008)

    Article  CAS  Google Scholar 

  25. S. Hu, H. Ning, K. Lu, Z. Fang, R. Tao, R. Yao, J. Zou, M. Xu, L. Wang, J. Peng, Effect of Al2O3 passivation layer and Cu electrodes on high mobility of amorphous IZO TFT. IEEE J. Electron Devices Soc. 6(1), 733–737 (2018)

    Article  Google Scholar 

  26. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Amorphous IZO-based transparent thin film transistors. Thin Solid Films 516(17), 5894–5898 (2008)

    Article  CAS  Google Scholar 

  27. J. Yuan, J. Zhang, J. Wang, D. Yan, W. Xu, Study on the instability of organic field-effect transistors based on fluorinated copper phthalocyanine. Thin Solid Films 450(2), 316–319 (2004)

    Article  CAS  Google Scholar 

  28. Y. Vygranenko, K. Wang, A. Nathan, Stable indium oxide thin-film transistors with fast threshold voltage recovery. Appl. Phys. Lett. 91(26), 263508 (2007)

    Article  Google Scholar 

  29. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, J. Chung, Amorphous gallium indium zinc oxide thin film transistors: sensitive to oxygen molecules. Appl. Phys. Lett. 90(19), 192101 (2007)

    Article  Google Scholar 

  30. J.K. Jeong, H. Won Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93(12), 123508 (2008)

    Article  Google Scholar 

  31. J.-S. Park, J.K. Jeong, H.-J. Chung, Y.-G. Mo, H.D. Kim, Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 92(7), 072104 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51772019 and 51372016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiqing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Jia, L., Su, J. et al. Investigation on electrical characteristics of amorphous InZnSnMgO thin film transistors deposited at room-temperature. J Mater Sci: Mater Electron 30, 20551–20555 (2019). https://doi.org/10.1007/s10854-019-02419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02419-1

Navigation