Skip to main content

Advertisement

Log in

Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium titanate nanoparticles (NPs) were synthesised using a modified sol–gel technique. The structure and morphology of NPs were described using various techniques. The photocatalytic activities of the NPs were evaluated by the photocatalytic degradation of Eriochrome black T and potassium dichromate in the presence of UV light irradiation. The barium titanate NP catalyst exhibited higher photocatalytic activity for the degradation of pollutants effectively at room temperature. The different parameters effects such as pollutant initial concentration, loading of photocatalyst, initial pH values of the solution were also examined on the decolourization efficiency of the pollutants. The highest degradation efficiency was achieved for Eriochrome dark T (93%) and potassium dichromate (92%) pollutants. The prepared NPs showed 26 μmol g−1 hydrogen generation within 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Hou, S.B. Cronin, Adv. Funct. Mater. 23, 1662 (2013)

    Article  Google Scholar 

  2. C. Miclea, C. Tanasoiu, I. Spanulescu, C.F. Miclea, A. Gheorghiu, L. Amarande, M. Cioangher, C.T. Miclea, Rom. J. Inf. Sci. Technol. 10, 335 (2007)

    Google Scholar 

  3. K.R. Reddy, K.V. Karthik, S.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169 (2016)

    Article  CAS  Google Scholar 

  4. Y. Zhao, X. Zhang, J. Liu, C. Wang, J. Li, H. Jin, Ceram. Int. 44, 15929 (2018)

    Article  CAS  Google Scholar 

  5. H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, ACS Appl. Mater. Interfaces 4, 4853 (2012)

    Article  CAS  Google Scholar 

  6. C.L. Lai, H.L. Huang, J.H. Shen, K.K. Wang, D. Gan, Ceram. Int. 41, 5041 (2015)

    Article  CAS  Google Scholar 

  7. H.C. Huang, C.L. Yang, M.S. Wang, X.G. Ma, Spectrochim Acta A 208, 65 (2019)

    Article  CAS  Google Scholar 

  8. M. Nageri, V. Kumar, Mater. Chem. Phys. 213, 400 (2018)

    Article  CAS  Google Scholar 

  9. X. Xiong, R. Tian, X. Lin, D. Chu, S. Li, J. Nanomater 16, 173 (2015)

    Google Scholar 

  10. M. Zhang, Q. Liang, S. Xu, Z. Li, Optik 127, 7993 (2016)

    Article  CAS  Google Scholar 

  11. J. Li, J.W. Ko, W.B. Ko, Eurasian Chem. Technol. J. 17, 281 (2015)

    Article  CAS  Google Scholar 

  12. V.P. Pavlović, B.D. Stojanović, V.B. Pavlović, Z. Marinković-Stanojević, L. Živković, M.M. Ristić, Sci. Sinter 40, 21 (2008)

    Article  Google Scholar 

  13. Q. Li, R. Li, L. Zong, J. He, X. Wang, J. Yang, Int. J. Hydrog. Energy 38, 12977 (2013)

    Article  CAS  Google Scholar 

  14. P. Ctibor, H. Ageorge, V. Stengl, N. Murafa, I. Pis, T. Zahoranova, V. Nehasil, Z. Pala, Ceram. Int. 37, 2561 (2011)

    Article  CAS  Google Scholar 

  15. T. Xian, H.H. Yang, L.J. Di, J.F. Dai, J. Alloy. Compd. 622, 1098 (2015)

    Article  CAS  Google Scholar 

  16. E.A. Mgbemeje, S.M. Akhtar, Y.O. Bong, C.D. Kue, J. Mater. Sci. Eng. 5, 5 (2016)

    Google Scholar 

  17. J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, H.L.W. Chan, Nanoscale Res. Lett. 6, 466 (2011)

    Article  Google Scholar 

  18. M. Rastogi, H.S. Kushwaha, R. Vaish, Electron. Mater. Lett. 12, 281 (2016)

    Article  CAS  Google Scholar 

  19. N.K. Veldurthi, N.K. Rao Eswar, S.A. Singh, G. Madras, Int. J. Hydrog. Energy 43, 22929 (2018)

    Article  CAS  Google Scholar 

  20. Ch. Venkata Reddy, I. Neelakanta Reddy, J. Shim, D. Kim, K. Yoo, Ceram. Int. 44, 12329 (2018)

    Article  Google Scholar 

  21. Ch. Venkata Reddy, V.S.V. Prabhakar, R.V.S.S.N. Ravikumar, S.J. Moon, J. Shim, J. Magn. Magn. Mater. 394, 70 (2015)

    Article  Google Scholar 

  22. G.H. Margarita, G.M. Antonieta, J.C.R. de Felipe, J.V. David, C. Geneviève, R. De la Elder, B. Damien, Int. J. Mol. Sci. 10, 4088 (2009)

    Article  Google Scholar 

  23. J. Tsay, T. Fang, J. Am. Ceram. Soc. 82, 1409 (1999)

    Article  CAS  Google Scholar 

  24. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Lett. 61, 538 (2007)

    Article  CAS  Google Scholar 

  25. J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251 (2012)

    Article  Google Scholar 

  26. W. Yuan, C. Zhang, H. Wei, Q. Wang, K. Li, RSC Adv. 7, 22825 (2017)

    Article  CAS  Google Scholar 

  27. J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. López-Peinado, R.M. Martín-Aranda, Appl. Catal. B 71, 44 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is financially supported by Board of Research in Nuclear Sciences and Department of Atomic Energy (BRNS-DAE), Bhabha Atomic Research Centre, Government of India, Mumbai, India under major research Grant No. 2013/34/4/BRNS/0483.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ch. Venkata Reddy or A. V. Raghu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, K.V., Reddy, C.V., Reddy, K.R. et al. Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci: Mater Electron 30, 20646–20653 (2019). https://doi.org/10.1007/s10854-019-02430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02430-6

Navigation