Skip to main content

Advertisement

Log in

Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report the enhanced solar light-mediated photocatalytic degradation of brilliant green dye using BiPO4 nanospindles and MoS2/BiPO4 nanorods synthesized by facile hydrothermal process. The synthesized nanomaterials were examined by various techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) attached with energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, and pore size distribution analysis. The detailed characterizations revealed that after the introduction of MoS2, the crystalline phase transformation from hexagonal to monoclinic was observed for BiPO4. The TEM images clearly confirmed that BiPO4 possessed nanospindles and MoS2/BiPO4 exhibited nanorod-shaped morphologies. The photocatalytic activity of synthesized MoS2/BiPO4 nanorod heterojunction was explored for the degradation of brilliant green (BG) dye under solar light irradiation. Interestingly, approximate 80% degradation of BG was observed under solar light in 70 min using MoS2/BiPO4 nanorods as photocatalyst. As an efficient photocatalyst, the synthesized MoS2/BiPO4 nanorod heterojunction exhibited enhanced photocatalytic efficiency as compared to pure BiPO4 nanospindles, commercially available TiO2PC-50 and TiO2 PC-500 under solar light. The high photocatalytic activity of MoS2/BiPO4 nanorod heterojunction could be related to the amended visible light-harvesting tendency, effective charge separation, and facile transportation of photogenerated e/h+ pairs at the heterojunction interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Yang, W. Yi, L. Zhang, T. Li, Z. Chao, J. Fan, Sci. Adv. Mater. 10, 1721–1728 (2018)

    Article  CAS  Google Scholar 

  2. H. Yu, T. Cui, Z. Liu, J. Energy Chem. 25, 621–626 (2016)

    Article  Google Scholar 

  3. M. Hallajiqomi, M. Mehdipourghazi, F. Varaminian, Sci. Adv. Mater. 10, 1759–1766 (2018)

    Article  CAS  Google Scholar 

  4. Y. Liu, Y. Cao, H. Lv, S. Li, H. Zhang, Mater. Lett. 188, 99–102 (2017)

    Article  CAS  Google Scholar 

  5. J. Wang, J. Jin, X. Wang, S. Yang, Y. Zhao, Y. Wu, S. Dong, J. Sun, J. Sun, J. Colloid Interface Sci. 505, 805–815 (2017)

    Article  CAS  Google Scholar 

  6. Y. Ding, Y. Zhou, W. Nie, P. Chen, Appl. Surf. Sci. 357, 1606–1612 (2015)

    Article  CAS  Google Scholar 

  7. Y. Zhu, Y. Liu, Y. Lv, Q. Ling, D. Liu, Y. Zhu, J. Mater. Chem. A 2, 13041–13048 (2014)

    Article  CAS  Google Scholar 

  8. J. Di, J. Chen, M. Ji, Q. Zhang, L. Xu, J. Xia, H. Li, Chem. Eng. J. 313, 1477–1485 (2017)

    Article  CAS  Google Scholar 

  9. J. Wang, J. Li, H. Li, S. Duan, S. Meng, X. Fu, S. Chen, Chem. Eng. J. 330, 433–441 (2017)

    Article  CAS  Google Scholar 

  10. B. Pan, Y. Wang, Y. Liang, S. Luo, W. Su, X. Wang, Int. J. Hydrog. Energy 39, 13527–13533 (2014)

    Article  CAS  Google Scholar 

  11. Y. Zhang, R. Selvaraj, M. Sillanpaa, Y. Kim, C.-W. Tai, Chem. Eng. J. 245, 117–123 (2014)

    Article  CAS  Google Scholar 

  12. T. Zeng, X. Yu, K.-H. Ye, Z. Qiu, Y. Zhu, Y. Zhang, Inorg. Chem. Commun. 58, 39–42 (2015)

    Article  CAS  Google Scholar 

  13. C.-W. Huang, M.-Y. Wu, Y.-W. Lin, J. Colloid Interface Sci. 490, 217–225 (2017)

    Article  CAS  Google Scholar 

  14. Y. Liu, Y. Lv, Y. Zhu, D. Liu, R. Zong, Y. Zhu, Appl. Catal. B 147, 851–857 (2014)

    Article  CAS  Google Scholar 

  15. J. Zhao, K. Ge, L. Zhao, S. Zhang, Y. Zen, J. Alloys Compd. 729, 189–197 (2017)

    Article  CAS  Google Scholar 

  16. B. Shi, H. Yin, T. Li, J. Gong, S. Lv, Q. Nie, Mat. Res. 20, 619–627 (2017)

    Article  CAS  Google Scholar 

  17. T. Lv, L. Pan, X. Liu, Z. Sun, RSC Adv. 2, 12706–12709 (2012)

    Article  CAS  Google Scholar 

  18. X. Zou, Y. Dong, X. Zhang, Y. Cui, X. Ou, X. Qi, Appl. Surf. Sci. 391, 525–534 (2017)

    Article  CAS  Google Scholar 

  19. Y. Yin, F. Zhou, S. Zhan, Y. Yang, Y. Liu, React. Kinet. Mech. Catal. 118, 425–437 (2016)

    Article  CAS  Google Scholar 

  20. T. Li, G. Lu, X. Hu, W. Xie, Q. Xia, S. Luo, Mater. Lett. 188, 392–395 (2017)

    Article  CAS  Google Scholar 

  21. H. Lv, Y. Liu, H. Tang, P. Zhang, J. Wang, Appl. Surf. Sci. 425, 100–106 (2017)

    Article  CAS  Google Scholar 

  22. Ritika, M. Kaur, A. Umar, S.K. Mehta, S. Singh, S.K. Kansal, Nanosci. Nanotechnol. Lett. 9, 1966–1974 (2017)

  23. Ritika, M. Kaur, A. Umar, S.K. Mehta, S. Singh, S.K. Kansal, H. Fouad, O.Y. Alothman, Materials 11, 2254 (2018)

    Article  Google Scholar 

  24. M. Zhao, G. Li, L. Li, L. Yang, J. Zheng, Cryst. Growth Des. 12, 3983–3991 (2012)

    Article  CAS  Google Scholar 

  25. S.N. Achary, D. Errandonea, A. Munoz, P.R. Hernández, F.J. Manjon, P.S.R. Krishna, S.J. Patwe, V. Grovera, A.K. Tyagi, Dalton Trans. 42, 14999–15015 (2013)

    Article  CAS  Google Scholar 

  26. B. Hu, X. Wang, Q. Wei, H. Shu, X. Yang, Y. Bai, H. Wu, Y. Song, L. Liu, J. Alloys Compd. 579, 18–26 (2013)

    Article  CAS  Google Scholar 

  27. Y. Zhang, B. Shen, H. Huang, Y. He, B. Fei, F. Lv, Appl. Surf. Sci. 319, 272–277 (2014)

    Article  CAS  Google Scholar 

  28. S. Vadivel, D. Maruthamani, M. Kumaravel, B. Saravanakumar, B. Paul, S.S. Dhar, K. Saravanakumar, V. Muthuraj, J. Taibah Univ. Sci. 11, 661–666 (2017)

    Article  Google Scholar 

  29. L. She, G. Tan, H. Ren, C. Xu, C. Zhao, A. Xia, J. Alloys Compd. 662, 220–231 (2016)

    Article  CAS  Google Scholar 

  30. L.E.M.C. Zaidan, R.V.L. Sales, J.B.A. Salgado, A.M.R.B. Silva, D.C. Napoleao, J.M.R. Diaz, O.M. Marques, M. Benachour, V.L. Silva, Environ. Sci. Pollut. Res. 24, 6002–6012 (2017)

    Article  CAS  Google Scholar 

  31. M. Kaur, S.K. Mehta, S.K. Kansal, Spectrochim. Acta, Part A 180, 37–43 (2017)

    Article  CAS  Google Scholar 

  32. M. Kaur, S.K. Mehta, S.K. Kansal, Sens. Actuators, B 245, 938–945 (2017)

    Article  CAS  Google Scholar 

  33. S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, New J. Chem. 40, 5185–5197 (2016)

    Article  CAS  Google Scholar 

  34. N. Meng, J. Cheng, Y. Zhou, W. Nie, P. Chen, Appl. Surf. Sci. 396, 310–318 (2017)

    Article  CAS  Google Scholar 

  35. X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun, L. Shi, Cryst. Res. Technol. 48, 363–368 (2013)

    Article  CAS  Google Scholar 

  36. B.K. Nandi, S. Patel, Arab. J. Chem. 10, S2961–S2968 (2017)

    Article  CAS  Google Scholar 

  37. S.O. Akpotu, B. Moodley, J. Environ. Chem. Eng. 4, 4503–4513 (2016)

    Article  CAS  Google Scholar 

  38. L. Kong, F. Qiu, Z. Zhao, X. Zhang, T. Zhang, J. Pan, D. Yang, J. Clean Prod. 137, 51–59 (2016)

    Article  CAS  Google Scholar 

  39. X. Yang, H. Sun, L. Zhang, L. Zhao, J. Lian, Q. Jiang, Sci. Rep. 6, 31591 (2016)

    Article  CAS  Google Scholar 

  40. L. Wang, Y. Chai, J. Ren, J. Ding, Q. Liu, W.-L. Dai, Dalton Trans. 44, 14625–14634 (2015)

    Article  CAS  Google Scholar 

  41. W.-C. Peng, X.-Y. Li, Catal. Commun. 49, 63–67 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to TEQIP-III grant of Dr.S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh and AICTE MODROB (File No. 9-181/RIFD/MODROB/policy-1/2016-17). Manjot Kaur is also grateful to UGC, Government of India for awarding the fellowship under UGC-BSR scheme (Grant No. F. 25-1/2014-15(BSR)/No. F. 5-91/2007/(BSR)). The authors would like to extend their gratitude to Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh for providing different instruments. The authors gratefully thank the Research Centre for Advanced Materials Science (RCAMS) at King Khalid University for the financial support through research program under Grant No. (RCAMS/KKU/007-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Umar or Sushil Kumar Kansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritika, Kaur, M., Umar, A. et al. Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods. J Mater Sci: Mater Electron 30, 20741–20750 (2019). https://doi.org/10.1007/s10854-019-02441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02441-3

Navigation