Skip to main content
Log in

Optical and structural investigations of MLaAlO4:Eu3+ (M = Mg2 +, Ca2+, Sr2+, and Ba2+) nanophosphors for full-color displays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Eu3+ -doped MLaAlO4 (M = Mg2+, Ca2+, Sr2+, and Ba2+) was synthesized via self-sustained solution combustion method. The samples were prepared at 600 °C, using large range of Eu3+ ion concentration (0.01–0.05 mol) to investigate the effect of concentration of dopant on the luminescence. The optimal dopant ion concentration obtained was 0.03 mol for the prepared aluminate lattice. Upon excitation at 393 nm, the samples showed the dominant photoluminescence emission bands in red region of the spectrum. The red emission of Eu3+ -activated phosphors corresponds to 5D0 → 7F2 (forced electric dipole) transition positioned at 606–611 nm. The samples were also calcined to a higher temperature to analyze the influence of temperature on the luminous efficacy. The structural determination was done via the combined efforts of Powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM) analysis. PXRD patterns of samples contain sharp peaks in 10°–80° region. Diffraction Pattern of CaLaAlO4 material has been found in close agreement to JCPDS card no. 85-1071 confirming the tetragonal crystal structure with 14/mmm space group. The crystalline nature of materials increases with rise in temperature. TEM micrographs exhibited the spherical shape of particles in 13–30 nm size. FT-IR spectra of materials showed peaks in 400–1000 cm−1 corresponding to lanthanum–oxygen and aluminum–oxygen bond vibrations. Due to excellent photoluminescent and suitable CIE coordinates, the Eu3+ -doped MLaAlO4 could have brilliant applications in the development of effective red phosphor for modern display devices and white light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Verma, R.P. Patel, Adv. Appl. Sci. Res. 6, 89 (2015)

    CAS  Google Scholar 

  2. N.C. George, K.A. Denault, R. Seshadri, Annu. Rev. Mater. Res. 43, 481 (2013)

    CAS  Google Scholar 

  3. X. Li, Y. Zhang, D. Geng, J. Lian, G. Zhang, Z. Hou, J. Lin, J. Mater. Chem. C 2, 9924 (2014)

    CAS  Google Scholar 

  4. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. 71, 1 (2010)

    Google Scholar 

  5. R.J. Xie, J. Am. Ceram. Soc. 96, 665 (2013)

    CAS  Google Scholar 

  6. D. Singh, V. Tanwar, A.P. Simantilke, B. Mari, P.S. Kadyan, I. Singh, Adv. Mater. Lett. 7, 47 (2016)

    CAS  Google Scholar 

  7. D. Singh, V. Tanwar, A.P. Simantilleke, S. Bhagwan, B. Mari, P.S. Kadyan, J. Mater. Sci. 27, 5303 (2016)

    CAS  Google Scholar 

  8. P. Pust, V. Weiler, C. Hecht, A. Tucks, A.S. Wochnik, A.K. Hen, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891 (2014)

    CAS  Google Scholar 

  9. K.W. Huang, W.T. Chen, C.I. Chu, S.F. Hu, H.S. Sheu, B.M. Cheng, J.M. Chen, R.S. Liu, Chem. Mater. 24, 2220 (2012)

    CAS  Google Scholar 

  10. K.A. Denault, J. Brgoch, M.W. Gaultois, A. Mikhailovsky, R. Petry, H. Winkler, S.P. Denbaars, R. Seshadri, Chem. Mater. 26, 2275 (2014)

    CAS  Google Scholar 

  11. T. Grzyb, A. Szozeszak, J. Rozowska, J. Legendziewicz, S. Lis, J. Phys. Chem. C 116, 3219 (2012)

    CAS  Google Scholar 

  12. D. Singh, S. Sheoran, S. Bhagwan, S. Kadyan, Cogent Phys. 3, 1 (2016)

    CAS  Google Scholar 

  13. E. Yildiz, Mater. Sci. 36, 162 (2018)

    CAS  Google Scholar 

  14. D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, J. Lin, Dalton Trans. 41, 3078 (2012)

    CAS  Google Scholar 

  15. S. Lv, Z. Zhu, Y. Wang, Z. You, J. Li, C. Tu, J. Lumin. 144, 117 (2013)

    CAS  Google Scholar 

  16. V. Naresh, S. Buddhudu, J. Lumin. 137, 15 (2013)

    CAS  Google Scholar 

  17. D. Singh, S. Kadyan, J. Mater. Sci. 28, 11142 (2017)

    CAS  Google Scholar 

  18. I.P. Sahu, D.P. Bisen, R.K. Tamrakar, K.V.R. Murthy, M. Mohapatra, J. Sci. 2, 59 (2017)

    Google Scholar 

  19. Y. Chen, M. Wang, J. Wang, M. Wu, C. Wang, J. Solid State Light. 1, 1–8 (2014)

    CAS  Google Scholar 

  20. D. Singh, S. Sheoran, V. Tanwar, S. Bhagwan, J. Mater. Sci. 28, 3243 (2017)

    CAS  Google Scholar 

  21. M. Maczka, A. Bednarkiewicz, E. Mendoza-Mendoza, A.F. Fuentes, L. Kpinski, Mater. Chem. Phys. 143, 1039 (2014)

    CAS  Google Scholar 

  22. Y. Zhang, X. Kang, D. Geng, M. Shang, Y. Wu, X. Li, H. Lian, Z. Cheng, J. Lin, Dalton Trans. 42, 14140 (2013)

    CAS  Google Scholar 

  23. Y.J. Zhu, F. Chen, Chem. Rev. 114, 6462 (2014)

    CAS  Google Scholar 

  24. W. Lenggoro, Y. Itoh, K. Okuyama, T. Kim, J. Mater. Sci. 19, 3534 (2004)

    CAS  Google Scholar 

  25. S.T. Aruna, A.S. Mukasyan, Curr. Opin. Solid State Mater. 12, 44 (2008)

    CAS  Google Scholar 

  26. D. Singh, V. Tanwar, S. Bhagwan, R. Sonika, P.S. Kadyan, B. Mari, Adv. Sci. Lett. 20, 1726 (2014)

    Google Scholar 

  27. D. Singh, V. Tanwar, S. Bhagwan, V. Nishal, S. Sheoran, S. Kadyan, A.P. Samantilleke, P.S. Kadyan, Indian. J. Mater. Sci. 2015, 1 (2015)

    CAS  Google Scholar 

  28. B.S. Prathibha, M.S. Chandrashekara, B.M. Naghabhushan, H. Nagabhushan, Int. J. Innov. Eng. Technol. 6, 190 (2015)

    Google Scholar 

  29. D. Singh, S. Kadyan, S. Bhagwan, J. Mater. Sci. 28, 13478 (2017)

    CAS  Google Scholar 

  30. S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, J. Lin, J. Mater. Chem. C 5, 2927 (2017)

    CAS  Google Scholar 

  31. X. Zhang, Y. Chen, L. Zhou, Q. Pang, M. Gong, Ind. Eng. Chem. Res. 53, 6694 (2014)

    CAS  Google Scholar 

  32. H. Liu, Y. Hao, H. Wanga, J. Zhao, P. Huang, B. Xu, J. Lumin. 131, 2422 (2011)

    CAS  Google Scholar 

  33. D. Singh, S. Sheoran, J. Mater. Sci. 27, 12707 (2016)

    CAS  Google Scholar 

  34. J. Liao, S. Liu, B. Liu, L. Nie, J. Fu, H.R. We, Int. J. Light Electron Optics 126, 3781 (2015)

    CAS  Google Scholar 

  35. H. Song, D. Chen, Luminescence 22, 554 (2007)

    CAS  Google Scholar 

  36. Y. Zhang, D. Geng, X. Kang, M. Shang, Y. Wu, X. Li, H. Lian, Z. Cheng, J. Lin, Inorg. Chem. 52, 12986 (2013)

    CAS  Google Scholar 

  37. S. Kadyan, D. Singh, J. Mater. Sci. 29, 17277 (2018)

    CAS  Google Scholar 

  38. E. Hertle, L. Chepyga, M. Batentschuk, L. Zigan, J. Lumin. 182, 200 (2017)

    CAS  Google Scholar 

  39. A. Gloubokov, R. Jablonski, W.R. Romanowski, J. Saas, A. Pajaczkowska, R. Uecker, P. Reiche, J. Cryst. Growth 147, 123 (1995)

    CAS  Google Scholar 

  40. X.M. Wang, C.H. Wang, M.M. Wu, Y.X. Wang, X.P. Jing, J. Mater. Chem. 22, 3388 (2012)

    CAS  Google Scholar 

  41. V. Singh, V.V.R.K. Kumar, R.P.S. Chakradhar, H.Y. Kwaka, Philos. Mag. 90, 3095 (2010)

    CAS  Google Scholar 

Download references

Acknowledgement

Authors (SK and SS) also approvingly confess the financially viable provision from CSIR, New Delhi, India, in the form of SRF (09/382 [0170)/2014-EMR-1] and JRF [09/382(0194)/2017-EMR-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadyan, S., Singh, S., Sheoran, S. et al. Optical and structural investigations of MLaAlO4:Eu3+ (M = Mg2 +, Ca2+, Sr2+, and Ba2+) nanophosphors for full-color displays. J Mater Sci: Mater Electron 31, 414–422 (2020). https://doi.org/10.1007/s10854-019-02544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02544-x

Navigation