Skip to main content
Log in

The effect of growth technique on the characteristic properties of CdS layers for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effects of two different growth methods including electrodeposition (ED) (two-electrode configuration) and chemical bath deposition (CBD) on the characteristic properties of CdS thin-films were explored and reported. The electrodeposited CdS (ED-CdS) layers were grown on glass/fluorine-doped tin oxide (FTO) substrates using acidic and aqueous solution containing 0.3 M of thiourea (SC(NH2)2) and 0.2 M of cadmium chloride hydrate (CdCl2.xH2O). The chemical bath deposited CdS (CBD-CdS) layers were also grown on glass/FTO substrates using alkaline and aqueous solution containing 4 × 10–3 M of cadmium acetate dihydrate (Cd(CH3CO2)2.2H2O), 20 × 10–3 M of thiourea (TU) and 6 × 10–2 M ammonium acetate (NH4C2H3O2). The deposited CdS thin-films were characterised using X-ray diffraction (XRD), UV–Visible spectrophotometer (UV–Vis), scanning electron microscopy (SEM), and photoelectrochemical (PEC) cell measurement to study their structural, optical, morphological, and electrical properties, respectively. The structural study shows the polycrystalline nature of the ED-CdS and CBD-CdS thin-films with stable hexagonal phase after heat treatment. The preferred orientation for both ED-CdS and CBD-CdS layers was along (002) hexagonal plane. The average crystallite size of CdS thin-films grown by both deposition methods were in the range ~ (11–38) nm and ~ (22–53) nm before and after heat treatment, respectively. Optical studies reveal the direct bandgap value of 2.42 eV for the heat-treated ED-CdS and CBD-CdS layers which correspond to the bulk bandgap of CdS (hexagonal phase). Morphological studies depict the average grain sizes in the range ~ (90–260) nm for the CdS thin-films. The PEC cell measurements show that the CdS layers grown by both ED and CBD methods were n-type in electrical conduction before and after heat treatment. No visible precipitations of elemental S or CdS particles were observed in the deposition electrolyte of ED-CdS showing a stable bath using TU precursor during the growth. The solar cells fabricated using CBD-CdS showed better performance as compared to the devices fabricated using ED-CdS due to the uniform coverage of FTO surface and better fill factor (FF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.L. Chu, S.S. Chu, Solid State Electron. 38, 533–549 (1995)

    Article  CAS  Google Scholar 

  2. E. Sorokin, D. Klimentov, M.P. Frolov, Y. V. Korostelin, V.I. Kozlovsky, Y.P. Podmar’kov, Y.K. Skasyrsky, I.T. Sorokina, Appl. Phys. B Lasers Opt. 117 (2014) 1009–1014.

  3. S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J. Kim, V.B. Patil, RSC Adv. 4, 44547–44554 (2014)

    Article  CAS  Google Scholar 

  4. R.P. Parker, Phys. Med. Biol. 15, 605–620 (1970)

    Article  CAS  Google Scholar 

  5. H. Sezen, A.A. Rockett, S. Suzer, Anal. Chem. 84, 2990–2994 (2012)

    Article  CAS  Google Scholar 

  6. J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  CAS  Google Scholar 

  7. H. Zogg, a. N. Tiwari, a. Romeo, D.L. Ba, D.L. Bätzner, H. Zogg, a. N. Tiwari, a. Romeo, D.L. Ba, Thin Solid Films 362 (2000) 420–425.

  8. X. Wu, Sol. Energy 77, 803–814 (2004)

    Article  CAS  Google Scholar 

  9. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics Res. Appl. 19, 894–897 (2011)

    Article  CAS  Google Scholar 

  10. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 27, 565–575 (2019)

    Article  Google Scholar 

  11. R.A. Berrigan, N. Maung, S.J.C. Irvine, D. Ellis 195, 718–724 (1998)

    CAS  Google Scholar 

  12. N.R. Paudel, C. Xiao, Y. Yan, (2014) 1991–1998.

  13. A. Naumov, V. Semenov, E. Goncharov, Inorg. Mater. 37, 539–543 (2001)

    Article  CAS  Google Scholar 

  14. P.K. Nair, M.T.S. Nair, V.M. Garcia, O.L. Arenas, Y. Pena, A. Castillo, I. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, M.E. Rincon, Sol. Energy Mater. Sol. Cells 52, 313–344 (1998)

    Article  CAS  Google Scholar 

  15. S.K. Das, Thin Solid Films 226, 259–264 (1993)

    Article  CAS  Google Scholar 

  16. I.M. Dharmadasa, Advances in Thin-Films Solar Cells (Pan Stanford Publishing Pte. Ltd, Boulevard, Singapore, 2013)

    Google Scholar 

  17. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306–7312 (2008)

    Article  CAS  Google Scholar 

  18. S. Messina, M.T.S. Nair, P.K. Nair, J. Phys. D. Appl. Phys. 41, 095112 (2008)

    Article  Google Scholar 

  19. I.O. Oladeji, L. Chow, J.R. Liu, W.K. Chu, A.N.P. Bustamante, C. Fredricksen, A.F. Schulte, Thin Solid Films 359, 154–159 (2000)

    Article  CAS  Google Scholar 

  20. K. Yamaguchi, P. Mukherjee, T. Yoshida, H. Minoura, Chem. Lett. (2001) 864–865.

  21. A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017)

    Article  CAS  Google Scholar 

  22. D.G. Diso, G.E.A. Muftah, V. Patel, I.M. Dharmadasa, J. Electrochem. Soc. 157, H647 (2010)

    Article  CAS  Google Scholar 

  23. K. Yamaguchi, T. Yoshida, T. Sugiura, H. Minoura, J. Phys. Chem. B 102, 9677–9686 (1998)

    Article  CAS  Google Scholar 

  24. N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2418–2429 (2015)

    Article  CAS  Google Scholar 

  25. H.I. Salim, O.I. Olusola, A.A. Ojo, K.A. Urasov, M.B. Dergacheva, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 27, 6786–6799 (2016)

    Article  CAS  Google Scholar 

  26. A.K. Mukhopadhyay, A.K. Chakraborty, A.P. Chatterjee, S.K. Lahiri, 209 (1992) 92–96.

  27. R.P. Raffaelle, H. Forsell, T. Potdevin, R. Friedfeld, J.G. Mantovani, S.G. Bailey, S.M. Hubbard, E.M. Gordon, A.F. Hepp, 57 (1999) 167–178.

  28. H.I. Salim, Multilayer Solar Cells Based on CdTe Grown From Nitrate Precursor, (PhD Thesis) Sheffield Hallam University, 2016.

  29. T.L. Chu, J. Electrochem. Soc. 139, 2443 (1992)

    Article  CAS  Google Scholar 

  30. W.J. Danaher, L.E. Lyons, G.C. Morris, Sol. Energy Mater. 12, 137–148 (1985)

    Article  CAS  Google Scholar 

  31. O. Zelaya-Angel, J.J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, A. Ferreira Da Silva, Appl. Phys. Lett. 64, 291–293 (1994)

    Article  CAS  Google Scholar 

  32. M. Ichimura, F. Goto, E. Arai, J. Appl. Phys. 85, 7411–7417 (1999)

    Article  CAS  Google Scholar 

  33. R. Ramírez-Bon, N.C. Sandoval-Inda, F.J. Espinoza-Beltrán, M. Sotelo-Lerma, O. Zelaya-Angel, C. Falcony, J. Phys. Condens. Matter 9, 10051–10058 (1997)

    Article  Google Scholar 

  34. I. Kaur, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc. 127, 943–948 (1980)

    Article  CAS  Google Scholar 

  35. K.S. Balakrishnan, A.C. Rastogi, Sol. Energy Mater. 20, 417–434 (1990)

    Article  CAS  Google Scholar 

  36. A. Oliva, R. Castro-Rodrı́guez, O. Solı́s-Canto, V. Sosa, P. Quintana, J.. Peña, Appl. Surf. Sci. 205 (2003) 56–64.

  37. H.R. Moutinho, D. Albin, Y. Yan, R.G. Dhere, X. Li, C. Perkins, C.S. Jiang, B. To, M.M. Al-Jassim, Thin Solid Films 436, 175–180 (2003)

    Article  CAS  Google Scholar 

  38. A.P. Samantilleke, M.F. Cerqueira, S. Heavens, P. Warren, I.M. Dharmadasa, G.E.A. Muftah, C.J.R. Silva, B. Mar??, Thin Solid Films 519 (2011) 7583–7586.

  39. A. Cortes, H. Gómez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21–34 (2004)

    Article  CAS  Google Scholar 

  40. I. Dharmadasa, P. Bingham, O. Echendu, H. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, a. Abbas, Coatings 4 (2014) 380–415.

  41. S. Prabahar, M. Dhanam, J. Cryst. Growth 285, 41–48 (2005)

    Article  CAS  Google Scholar 

  42. A.A. Ojo, Mater. Res. Express 6, 086465 (2019)

    Article  CAS  Google Scholar 

  43. C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, Y. Jiang, Nanotechnology 21 (2010).

  44. H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26 (2015).

  45. A. Rao, S. Krishnan, G. Sanjeev, K. Siddappa, 5 (2009) 55–62.

Download references

Acknowledgements

The author would like to thank the Materials and Engineering Research Institute (MERI), Sheffield Hallam University (SHU), UK for the facilities made available for the work reported in this paper. The author would like to acknowledge Prof. I.M. Dharmadasa, Dr. A.A. Ojo, and other members of the SHU Solar Energy Group for their contributions, guidance and supports. Also, the author wishes to thank the University of Zakho, Kurdistan region-Iraq for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Salim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, H.I. The effect of growth technique on the characteristic properties of CdS layers for solar cell applications. J Mater Sci: Mater Electron 31, 4193–4207 (2020). https://doi.org/10.1007/s10854-020-02972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02972-0

Navigation