Skip to main content
Log in

Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Erbium doped 50SiO2 -30Li2O- 1Gd2O3- (19 − x) CdO and x Er2O3 glass system, where (0 ≤ x ≥ 2.5), mol%, has been prepared by the conventional melt quenching technique. The physical, structural and optical properties are explained by analyzing the data obtained from X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV–Visible (UV–Vis-NIR) and photoluminescence results. X-ray powder diffraction patterns show broad peaks which conform glassy nature of the sample. FTIR spectroscopy reveals the presence of SiO4, CdO4 and Er–O vibration groups in the glass samples. The optical absorption spectra in the wavelength range of 200–2500 nm were measured and the optical band gaps, Urbach energy, Electronegativity (χ) Electron Polarizability (α°), and Optical basicity (˄) were determined. The optical absorption spectra of Er3+ ions in these glasses show eleven bands and are assigned to the transitions from ground state to excited levels. It was found that the optical band gap increases from 3.19 to 3.51 eV with the increase in Er2O3 concentration. The strong sharp peak belongs to Er+3 emission is investigated in photoluminescence spectra at ordinary condition (1 atm. and at room temperature). It excites by wavelength of 385 nm and gives pale green color at 559 nm. Judd–Ofelt theory has been used to analyze the spectra arising from erbium ions doped 50 SiO2 -30 Li2O- 1Gd2O3- (19 − x) CdO and x Er2O3. The intensity parameters Ω2,4,6 of the present complex and lifetimes of selected levels are theoretically calculated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, Comparison study of optical properties on erbium-doped and silver doped zinc tellurite glass system for non-linear application. J. Mater. Sci. 30, 6378 (2019)

    CAS  Google Scholar 

  2. M.N. Azlan, M.K. Halimah, H.A.A. Sidek, Linear and nonlinear optical properties of erbium doped zinc borotellurite glass system. J. Lumin. 181, 400–406 (2017)

    CAS  Google Scholar 

  3. Y. Nageno, H. Takebe, K. Morinaga, Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc. 76, 3081–3086 (1993)

    CAS  Google Scholar 

  4. A.R. Devi, C.K. Jayasankar, Optical properties of Nd3+ ions in lithium borate glasses. Mater. Chem. Phys. 42, 106–119 (1995)

    Google Scholar 

  5. V. Mehta, G. Aka, A.L. Dawar, A. Mansingh, Optical properties and spectroscopic parameters of Nd3+ doped phosphate and borate glasses. Opt. Mater. (Amsterdam) 12, 53–63 (1999)

    CAS  Google Scholar 

  6. E. Pecoraro, J.A. Sampaio, L.A.O. Nunes, S. Gama, M.L. Baesso, Spectroscopic properties of water free Nd2O3-doped low silica calcium aluminosilicate glasses. J. Non Cryst. Solids 277, 73–81 (2000)

    CAS  Google Scholar 

  7. E. Snitzer, R. Woodcock, Yb3+–Er3+ Glass laser. Appl. Phys. Lett. 6(3), 45–46 (1965)

    CAS  Google Scholar 

  8. B. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 465(127), 750–761 (1962)

    Google Scholar 

  9. G. Ofelt, Intensities of crystal spectra of rare earth ions. J. Chem. Phys. 37, 511–520 (1962)

    CAS  Google Scholar 

  10. H. Lihui, L. Xingren, X. Wu, C. Baojiu, L. Jiuling, Infrared and visible luminescence properties of Er3+ and Yb3+ ions codoped Ca3Al2Ge3O12 glass under 978 nm diode laser excitation. J. Appl. Phys. 90(11), 5550–5553 (2001)

    Google Scholar 

  11. E.S. Yousef, M.M. Elokr, Y.M. AbouDeif, Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er 3+ ions. J. Mol. Struct. 1108, 257–262 (2016)

    CAS  Google Scholar 

  12. E.S. Yousef, H.H. Hegazy, S. Almojadah, M. Reben, Absorption spectra and Raman gain coefficient in near-IR region of Er3+ ions doped TeO2 –Nb2O5 –Bi2O3 –ZnO glasses. Opt. Laser Technol. 74, 138–144 (2015)

    CAS  Google Scholar 

  13. S. Mohan, K.S. Thind, D. Singh, L. Gerward, Optical properties of alkali and alkaline-earth lead borate glasses doped with Nd3+ Ions. Glass Phys. Chem. 34(3), 265–273 (2008)

    CAS  Google Scholar 

  14. S.O. Baki, L.S. Tan, C.S. Kan, H.M. Kamari, A.S.M. Noor, M.A. Mahdi, Structural and optical properties of Er3+-Yb3+ co-doped multi-composition TeO2-ZnO-PbO-TiO2-Na2O glass. J. Non Cryst. Solids 362, 156–161 (2013)

    CAS  Google Scholar 

  15. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Non Cryst. Solids 490, 35–43 (2018)

    CAS  Google Scholar 

  16. N. Chiodini, A. Paleari, G. Brambilla, E.R. Taylor, Erbium doped nanostructured tin- silicate glass-ceramic composites. Appl. Phys. Lett. 80, 4449–4451 (2002)

    CAS  Google Scholar 

  17. D. Jaque, J. Capmany, F. Molero, Z.D. Luo, J.G. Sole, Upconversion luminescence in the Nd3+: YAB self-frequency doubling laser crystal. Opt. Mater. 10, 211–217 (1998)

    CAS  Google Scholar 

  18. H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, E. Yue-Bun Pun, Optical transitions and visible upconversion in Er3+-doped niobic tellurite glass. J. Appl. Phys. 93, 186–191 (2003)

    CAS  Google Scholar 

  19. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Femtosecond laser written channel waveguides in tellurite glass. Opt. Exp. 14, 12145–12150 (2006)

    CAS  Google Scholar 

  20. A. Amarnath Reddy, S. Surendra Babu, G. Vijaya Prakash, Er3+ -doped phosphate glasses with improved gain characteristics for broadband optical amplifiers. Opt. Comm. 285, 5364–5367 (2012)

    CAS  Google Scholar 

  21. H. Berthou, C.K. Jorgensen, Optical fiber temperature sensor based on upconversion-excited fluorescence. Opt. Lett. 15, 1100 (1990)

    CAS  Google Scholar 

  22. J.F. Phillipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses. Appl. Phys. B 72, 399–405 (2001)

    Google Scholar 

  23. P. Haro-Gonzalez, I.R. Martin, L.L. Martin, S.F. Leon-Luis, C. Perez-Rodriguez, V. Lavin, Characterization of Er3+ and Nd3+ doped strontium barium niobate glass ceramic as temperature sensors. Opt. Mater. 33, 742–745 (2011)

    CAS  Google Scholar 

  24. J.A. Hutchinson, T.H. Allik, Diode array pumped Er, Yb: phosphate glass laser. Appl. Phys. Lett. 60, 1424–1426 (1992)

    CAS  Google Scholar 

  25. H. Lin, E.Y.B. Pun, X.R. Liu, Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications. J. Non Cryst. Solids 283(1–3), 27–33 (2001)

    CAS  Google Scholar 

  26. H. Wilke, Organische oberflächenemittierende Laser mit vertikaler Kavität ., PhD, Institute of Nanostructure Technologies and Analytics (INA), Kassel, Germany, (2019)

  27. N. Effendy, Z.A. Wahab, S. Abdul Aziz, K.A. Matori, M.H.M. Zaid, S.S.A. Rashid, Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials. Mater. Express 7(1), 59–65 (2017)

    CAS  Google Scholar 

  28. E.M.A. Khalil, F.H. Elbatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses. Phys B 405(5), 1294–1300 (2010)

    CAS  Google Scholar 

  29. J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976)

    Google Scholar 

  30. K.H.S. Shaaban, Y. Saddeek, K. Aly, Physical properties of pseudo quaternary Na2B4O7 –SiO2 –MoO3 –Dy2O3 glasses. Ceram. Int. 44, 3862–3867 (2018)

    CAS  Google Scholar 

  31. A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd-Ofelt analysis of Dy 3+ doped borosilicate glasses. Opt. Mater. 72, 169–176 (2017)

    CAS  Google Scholar 

  32. K.S. Shaaban, W.M. Abd-Allah, Y.B. Saddeek, Opt. Quant. Electron 52, 3 (2020). https://doi.org/10.1007/s11082-019-2094-3

    Article  CAS  Google Scholar 

  33. H. Darwish, S. Ibrahim, M.M. Gomaa, Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3. J. Mater. Sci. 24(3), 1028–1036 (2012)

    Google Scholar 

  34. T.G.V.M. Rao, A. Rupesh Kumar, C. Kalyan Chakravarthi, M. Rami Reddy, N. Veeraiah, Spectroscopical splitting of Cu ion energy levels in magnesium lead fluoro silicate glasses. Phys B 407(4), 593–597 (2012)

    CAS  Google Scholar 

  35. A.M. Efimov, Vibrational spectra, related properties, and structure of inorganic glasses. J. Non-Cryst. Solids 253(1–3), 95–118 (1999)

    CAS  Google Scholar 

  36. K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 Content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) glass system. Silicon 9(5), 785–793 (2017)

    CAS  Google Scholar 

  37. M. Imaoka, H. Hasegawa, I. Yasui, X-ray diffraction analysis on the structure of the glasses in the system PbO-SiO2. J. Non-Cryst. Solids 85(3), 393–412 (1986)

    CAS  Google Scholar 

  38. H. Dunken, R.H. Doremus, Short time reactions of a Na2O-CaO-SiO2 glass with water and salt solutions. J. Non-Cryst. Solids 92(1), 61–72 (1987)

    CAS  Google Scholar 

  39. E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2(1), 49–60 (2010)

    CAS  Google Scholar 

  40. G. Navarra, I. Iliopoulos, V. Militello, S.G. Rotolo, M. Leone, OH-related infrared absorption bands in oxide glasses. J. Non-Cryst. Solids 351(21–23), 1796–1800 (2005)

    CAS  Google Scholar 

  41. G. Navarra, R. Boscaino, M. Leone, B. Boizot, Irradiation effects on the OH-related infrared absorption band in synthetic wet silica. J. Non-Cryst. Solids 353(5–7), 555–558 (2007)

    CAS  Google Scholar 

  42. K.S. Shaaban, A.A. El-Maaref, M. Abdelawwad, Y.B. Saddeek, H. Wilke, H. Hillmer, Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. J. Lumin. 196, 477–484 (2018)

    CAS  Google Scholar 

  43. J.R. Ferraro, M.H. Manghnani, Infrared absorption spectra of sodium silicate glasses at high pressures. J. Appl. Phys. 43(11), 4595–4599 (1972)

    CAS  Google Scholar 

  44. M.T. Wang, J.Z. Cheng, M. Li, F. He, Structure and properties of soda lime silicate glass doped with rare earth. Phys B 406, 187–191 (2011)

    CAS  Google Scholar 

  45. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, R. El-Mallawany, Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.12181

    Article  Google Scholar 

  46. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996)

    CAS  Google Scholar 

  47. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid-State Chem. 163(1), 100–112 (2002)

    CAS  Google Scholar 

  48. L. Singh, V. Thakur, R. Punia, R.S. Kundu, A. Singh, Structural and optical properties of barium titanate modified bismuth borate glasses. Solid State Sci 37, 64–71 (2014)

    CAS  Google Scholar 

  49. F. El-Diasty, F.A. Abdel Wahab, M. Abdel-Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. J. Appl. Phys. 100(9), 093511 (2006)

    Google Scholar 

  50. D. Sushama, P. Predeep, Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Int. J. Appl. Phys. Math. 4, 139–143 (2014)

    CAS  Google Scholar 

  51. J. Tauc, Electronic properties of amorphous materials. Science 158, 1543–1548 (1967)

    CAS  Google Scholar 

  52. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Express 5(2), 025207 (2018)

    Google Scholar 

  53. A.M. Emara, E.S. Yousef, Structural and optical properties of phosphate-zinc-nickel oxide glasses for narrow band pass absorption filters. J. Mod. Opt. 65(15), 1839–1845 (2018)

    CAS  Google Scholar 

  54. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60 (2019)

    CAS  Google Scholar 

  55. T.Q. Khanh, P. Bodrogi, Q.T. Vinh, Color Quality of Semiconductor and Conventional Light Sources (Wiley-VCH, Weinheim, 2017)

    Google Scholar 

  56. N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, J. Non-Cryst. Solids 429, 153 (2015)

    CAS  Google Scholar 

  57. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, S.F. Hathot, Optical properties and crystallization of bismuth boro-tellurite glasses. J. Non-Cryst. Solids 476, 15–24 (2017)

    CAS  Google Scholar 

  58. M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non-Cryst. Solids 371–372, 14–21 (2013)

    Google Scholar 

  59. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40(9), 14477–14481 (2014)

    CAS  Google Scholar 

  60. Swapna K., Mahamuda SK., Venkateswarlu M., Srinivasa Rao A., Jayasimhadri M., Suman Shakya, Vijaya Prakash G. (2015) Visible, up-conversion and NIR (1.5 μm) luminescence studies of Er3+ doped zinc alumino bismuth borate glasses. J. Lumin. 163, 55–63.

    CAS  Google Scholar 

  61. T. L. Cottrell, The Strengths of Chemical Bonds, 2d ed., (Butterworth, London, 1958) B. deB.

  62. Y. Fang, Hu Lili, L. Wen, M. Liao, Judd-Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses. J. Alloys Compd. 431, 246–249 (2007)

    CAS  Google Scholar 

  63. G.N. Hemantha, Kumar, J.L. Rao, K. Ravindra Prasad, Y. C. Ratnakaram, J. Alloys Compd. 480, 208–215, (2009)

  64. Y.C. Ratnakaram, N. V. Srihari, A. Kumar Vijaya, D. Thirupathi Naidu, R.P.S. Chakradhar, Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations, Spectrochim. Acta Part A 72, 171–177, (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Al-Azhar University for supporting with the experimental measurements. In addition, the authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project, Number: (R.G.P2./22/40) under research center for advanced material science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh.S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K., Abdel Wahab, E.A., El-Maaref, A.A. et al. Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron 31, 4986–4996 (2020). https://doi.org/10.1007/s10854-020-03065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03065-8

Navigation