Skip to main content
Log in

Raising the thermoelectric performance of PbS with low-content polyparaphenylene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS), a promising medium-temperature thermoelectric material, is a cheap and excellent substitute for lead pyride. However, its high thermal conductivity limits its thermoelectric properties strongly. In this paper, the nanocomposites with PbS matrix and organic conducting polymer polyparaphenylene (PPP) supplement are introduced to decrease the thermal conductivity by mechanical mixing method. The experimental results show that the thermal conductivity of PbS–PPP nanocomposites significantly decreases and the minimum thermal conductivity is 0.43 W m−1 K−1, which can be obtained when the mass ratio of the PPP is 3% at 773 K. Consequently, the figure of merit (ZT) of PbS–PPP nanocomposites reaches as large as 0.5, which is 52.40% of magnitude higher than that of pure PbS. Therefore, it is an effective way to improve the thermoelectric properties of PbS by introducing the organic conducting polymer PPP. This work may shed light on developing high-performance thermoelectric materials via organic–inorganic nanocomposites at the intermediate temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.Q. Zhou, W. Li, X. Wang, J. Li, L.T. Zheng, B. Gao, X.Y. Zhang, Y.Z. Pei, Sci. China Mater. 62, 379 (2019). https://doi.org/10.1007/s40843-018-9328-5

    Article  CAS  Google Scholar 

  2. C.J. Yao, H.L. Zhang, Q.C. Zhang, Polymers (2019). https://doi.org/10.3390/polym11010107

    Article  Google Scholar 

  3. P.P. Murmu, S.V. Chong, J. Storey, S. Rubanov, J. Kennedy, Mater. Today Energy 13, 249 (2019). https://doi.org/10.1016/j.mtener.2019.06.001

    Article  Google Scholar 

  4. P.P. Murmu, J. Kennedy, S. Suman, S.V. Chong, J. Leveneur, J. Storey, S. Rubanov, G. Ramanath, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2018.107549

    Article  Google Scholar 

  5. J. Zhang, Y. Ye, C. Li, J. Yang, H. Zhao, X. Xu, R. Huang, L. Pan, C. Lu, Y. Wang, J. Alloys Compds 696, 1342 (2017). https://doi.org/10.1016/j.jallcom.2016.12.088

    Article  CAS  Google Scholar 

  6. M. Presecnik, S. Bernik, J. Alloys Compds 686, 708 (2016). https://doi.org/10.1016/j.jallcom.2016.06.058

    Article  CAS  Google Scholar 

  7. V. Siriwongrungson, A. Sakulkalavek, R. Sakdanuphab, J. Mater. Sci. Mater. Electron. 27, 11102 (2016). https://doi.org/10.1007/s10854-016-5227-5

    Article  CAS  Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012). https://doi.org/10.1038/nature11439

    Article  CAS  Google Scholar 

  9. H. Wu, J. Carrete, Z. Zhang, Y. Qu, X. Shen, Z. Wang, L.-D. Zhao, J. He, NPG Asia Mater. 6, e108 (2014). https://doi.org/10.1038/am.2014.39

    Article  CAS  Google Scholar 

  10. M. Markov, M. Zebarjadi, Nanoscale Microscale Thermophys. Eng. 23, 117 (2019). https://doi.org/10.1080/15567265.2018.1520762

    Article  CAS  Google Scholar 

  11. A.G. El-Shamy, Mater. Sci. Semicond. Process. 100, 245 (2019). https://doi.org/10.1016/j.mssp.2019.04.004

    Article  CAS  Google Scholar 

  12. K.V. Zakharchuk, M. Widenmeyer, D.O. Alikin, W.J. Xie, S. Populoh, S.M. Mikhalev, A. Tselev, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky, J. Mater. Chem. A 6, 13386 (2018). https://doi.org/10.1039/c8ta01463a

    Article  CAS  Google Scholar 

  13. W. Shi, S.Y. Qu, H.Y. Chen, Y.L. Chen, Q. Yao, L.D. Chen, Angew. Chem. Int. Ed. 57, 8037 (2018). https://doi.org/10.1002/anie.201802681

    Article  CAS  Google Scholar 

  14. M. Nomura, J. Shiomi, T. Shiga, R. Anufriev, Jpn J. Appl. Phys. (2018). https://doi.org/10.7567/jjap.57.080101

    Article  Google Scholar 

  15. J.J. Liu, Y. Liu, Y.H. Jing, Y.F. Gao, J.Q. Zhao, B. Ouyang, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2448-2

    Article  Google Scholar 

  16. L.D. Zhao, J. He, S. Hao, C.-I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012). https://doi.org/10.1021/ja306527n

    Article  CAS  Google Scholar 

  17. L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011). https://doi.org/10.1021/ja208658w

    Article  CAS  Google Scholar 

  18. I. Golovtsov, S. Bereznev, R. Traksmaa, A. Öpik, Thin Solid Films 515, 7712 (2007). https://doi.org/10.1016/j.tsf.2006.11.098

    Article  CAS  Google Scholar 

  19. Z.H. Wu, H.Q. Xie, Mater. Res. Innov. 18, 120 (2014). https://doi.org/10.1179/1433075x13y.0000000117

    Article  CAS  Google Scholar 

  20. Z.H. Wu, H.Q. Xie, Y.B. Zhai, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4842035

    Article  Google Scholar 

  21. S. Sasaki, T. Yamamoto, T. Kanbara, A. Morita, T. Yamamoto, J. Polym. Sci. B 30, 293 (1992). https://doi.org/10.1002/polb.1992.090300309

    Article  CAS  Google Scholar 

  22. D.R. Rueda, M. Cagiao, F.B. Calleja, Polym. Bull. 21, 635 (1989)

    Article  CAS  Google Scholar 

  23. H. Ueno, K. Yoshino, Phys. Rev. B 34, 7158 (1986). https://doi.org/10.1103/physrevb.34.7158

    Article  CAS  Google Scholar 

  24. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, J. Appl. Phys. 107, 094308 (2010). https://doi.org/10.1063/1.3388076

    Article  CAS  Google Scholar 

  25. X. Hu, J. Hu, X.A. Fan, B. Feng, Z. Pan, P. Liu, Y. Zhang, R. Li, Z. He, G. Li, Y. Li, J. Solid State Chem. 282, 121060 (2020). https://doi.org/10.1016/j.jssc.2019.121060

    Article  CAS  Google Scholar 

  26. J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compds 432, 7 (2007). https://doi.org/10.1016/j.jallcom.2006.05.115

    Article  CAS  Google Scholar 

  27. A.J. Ahmed, S.M.K. Nazrul Islam, R. Hossain, J. Kim, M. Kim, M. Billah, M.S.A. Hossain, Y. Yamauchi, X. Wang, R. Soc. Open Sci. 6, 90870 (2019). https://doi.org/10.1098/rsos.190870

    Article  Google Scholar 

  28. S. Johnsen, J. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 3460 (2011). https://doi.org/10.1021/ja109138p

    Article  CAS  Google Scholar 

  29. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  30. M. Scheele, N. Oeschler, I. Veremchuk, S. Peters, A. Littig, A. Kornowski, C. Klinke, H. Weller, ACS Nano 5, 8541 (2011)

    Article  CAS  Google Scholar 

  31. D. Cadavid, M. Ibáñez, S. Gorsse, A.M. López, A. Cirera, J.R. Morante, A. Cabot, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-1328-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of the National Natural Science Foundation of China (No. 51590902), the National Natural Science Foundation of China (No. 51676117), the Program for Professor of Special Appointment (Young Eastern Scholar, No. QD2015052) at Shanghai Institutions of Higher Learning, the Key Subject of Shanghai Polytechnic University (Material Science and Engineering, No. XXKZD1601) and Gaoyuan Discipline of Shanghai: Environmental Science and Engineering (Resource Recycling Science and Engineering).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaqing Xie or Zhen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lin, J., Xie, H. et al. Raising the thermoelectric performance of PbS with low-content polyparaphenylene. J Mater Sci: Mater Electron 31, 6586–6592 (2020). https://doi.org/10.1007/s10854-020-03214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03214-z

Navigation