Skip to main content
Log in

Effect of A-site cationic radius on ceramic La0.67−xDyxSr0.33MnO3 prepared by sol–gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.67−xDyxSr0.33MnO3 (x = 0.1, 0.12, 0.15, 0.20, 0.25, 0.30, 0.32) ceramics were prepared by sol–gel method. The samples were characterized by scanning electron microscopy, X-ray diffractometry, and resistance–temperature test (ρT) method. The experimental results showed that all of the samples were composed of a single phase with the orthorhombic perovskite structure and Pnma space group. The samples had high density, the average size of the grain decreased from 11.83 μm to 7.24 μm, while the number of grain boundaries increased. The one reason why resistance (ρmax) increases was supposed to be the boundary scattering enhancement, while the temperature corresponding to the peak resistivity (TP) decreases. The average cation radius of the A-site decreased as the amount/concentration of doping with Dy3+ increased, changing the bond length and bond angle. Meanwhile, the double exchange was suppressed, this being another and more important reason why the resistance increased and the TP decreased. The metal–insulator transition temperature wide degree (ΔT) and resistivity (ρ) are the important factors in the temperature coefficient of resistance. In the competition of the two factors, the ρ occupied an advantageous place, therefore the electrical properties of the materials can be further optimized by adjusting the average cation radius of the A-site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413–415 (1994)

    Article  CAS  Google Scholar 

  2. C.N. Rao, Gaint magnetoresistance and related properties of rare-earth manganates and other oxide systems. Chem. Mater. 8, 2421–2434 (1996)

    Article  CAS  Google Scholar 

  3. A.P. Ramirez, Colossal magnetoresistance. J. Phys. 9, 8171–8199 (1997)

    CAS  Google Scholar 

  4. P.G. De Gennes, Effect of double exchange in magnetic crystals. PhysRev 118(1), 141–154 (1960)

    Google Scholar 

  5. D.G. Kuberkar, R.R. Doshi, P.S. Solanki et al., Grain morphology and size disorder effect on the transport and magnetotransport in sol-gel grown nanostructured manganites. Appl. Surf. Sci. 258(22), 9041–9046 (2012)

    Article  CAS  Google Scholar 

  6. R. Von Helmholt et al., Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  Google Scholar 

  7. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1–xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1999)

    Article  Google Scholar 

  8. A.J. Millis, B.I. Shraiman, R. Mueller, Dynamic Jahn−Teller effect and colossal magnetoresistance in La1–xSrxMnO3. Phys. Rev. Lett. 77(1), 175–178 (1996)

    Article  CAS  Google Scholar 

  9. D.G. Kuberkar, R.R. Doshi, P.S. Solanki et al., Grain morphology and size disorder effect on the ttransport and magnetotransport in sol-gel grown nanostructured manganites. Appl. Surf. Sci. 258(22), 9041–9046 (2012)

    Article  CAS  Google Scholar 

  10. A.J. Millis, Cooperative Jahn-Teller effect and electron-phonon coupling in La1-xAxMnO3. Phys. Rev. B 53(13), 8434–8441 (1996)

    Article  CAS  Google Scholar 

  11. H.Y. Hwang, S.W. Choeng, P.G. Radaelli et al., Lattice effect on magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75(5), 914 (1995)

    Article  CAS  Google Scholar 

  12. S. Bhattacharya, R.K. Mukherjee, B.K. Chaudhuri, H.D. Yang, Appl. Phys. Lett. 82, 4101 (2003)

    Article  CAS  Google Scholar 

  13. K.R. Mavani, P.L. Paulose, Effects of cation size disorder and lattice distortion on metamagnetism in phase-separated manganites. Solid State Commun. 135(3), 183–188 (2005)

    Article  CAS  Google Scholar 

  14. T. Govardhan Reddy, P. Yadagiri Reddy, V. Raghavendra Reddy et al., Solid State Commun. 133, 77–81 (2005)

    Article  Google Scholar 

  15. D. Li, Q. Chen, Z. Li, H. Zhang, Y. Zhang, Structure, electrical and magnetic properties of La0.67Ca0.33−xKxMnO3 polycrystalline ceramic. J. Mater. Sci. 29, 1808–1816 (2017)

    Google Scholar 

  16. J. Ma, Y. Cai, W. Wang, Q. Cui, M. Theingi, H. Zhang, Q. Chen, Enhancement of temperature coefficient of resistivity in La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 40, 4963–4968 (2014)

    Article  CAS  Google Scholar 

  17. F. Jin, H. Zhang, X. Chen, X. Liu, Q. Chen, Improvement in electronic and magnetic transport of La0.67Ca0.33MnO3 manganites by optimizing sintering temperature. J. Sol-gel. Sci. Technol. 81, 1–8 (2016)

    Google Scholar 

  18. T. Sun, S. Zhao, F. Ji, X. Liu, Enhanced room-temperature MR and TCR in polycrystalline La0.67(Ca0.33−xSrx)MnO3 ceramics by oxygen assisted sintering. Ceram. Int. 44, 2400–2406 (2018)

    Article  CAS  Google Scholar 

  19. L. Li, H. Zhang, X. Liu, Structure and electromagnetic properties of La0.7Ca0.3-xKxMnO3 polycrystalline ceramics. Ceram. Int. 45, 10558–10564 (2019)

    Article  CAS  Google Scholar 

  20. T. Han, Y. Chen, G. Tian et al., Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Sci. China Mater. 59, 1003–1016 (2016)

    Article  CAS  Google Scholar 

  21. A. Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci.: Mater. Electron. 26, 5735–5742 (2015)

    CAS  Google Scholar 

  22. A. Sobhani-Nasab, Z. Zahraei, A. Mahnaz, Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. J. Mol. Struct. 1139, 430–435 (2017)

  23. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari et al., J. Clust. Sci. 26, 1305 (2015)

    Article  CAS  Google Scholar 

  24. L.W. Lei, Z.Y. Fu, J.Y. Zhang, H. Wang, Synthesis and low field transport properties in a ZnO-doped La0.67Ca0.33MnO3 composite. Mater. Sci. Eng. B 128, 70–74 (2006)

    Article  CAS  Google Scholar 

  25. S. Yang, X. Liu, J. Dai, H. Zhang, Q. Chen, La0·7Ca0.3-xSrxMnO3:Ag0.2 (0.0165 ≤ x ≤ 0.1) ceramics with large and stable TCR in different magnetic field environments. Ceram. Int. 45, 24742–24749 (2018)

    Article  Google Scholar 

  26. L.M. Wang, C.-Y. Wang, C.C. Tseng, Correlation of the temperature coefficient of resistivity for doped manganites to the transition temperature, polaron binding energy, and magnetic order. Appl. Phys. Lett. 100(23), 232403 (2012)

    Article  Google Scholar 

  27. X. Chen, Q. Chen, F. Jin, X. Liu, H. Zhang, Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol-gel technique. J. Sol-Gel Sci. Technol. 80(1), 177–183 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, F., Li, D., Li, L. et al. Effect of A-site cationic radius on ceramic La0.67−xDyxSr0.33MnO3 prepared by sol–gel technique. J Mater Sci: Mater Electron 31, 7623–7629 (2020). https://doi.org/10.1007/s10854-020-03275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03275-0

Navigation