Skip to main content
Log in

Perovskite solar cells prepared under infrared irradiation during fabrication process in air ambience

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing fabrication method without glove-box is essential to industrialize the revolutionary development of perovskite solar cell (PSC). In this paper, infrared irradiation during the fabrication process was studied for the preparation of perovskite absorber layer in air ambience. The infrared irradiation could reduce the ambience moisture. And more importantly, it could offer stereoscopic uniform thermal radiation during the fabrication process to help prepare uniform perovskite absorber layer with decreased annealing temperature. The solar cell structure was Au/spiro-OMeTAD/CH3NH3PbI3/mesoporous TiO2/compact TiO2/FTO glass. The Au electrode was deposited by thermal evaporation. And the functional thin films 〈spiro-OMeTAD/CH3NH3PbI3/mesoporous TiO2/compact TiO2〉 were prepared by spin coating/spin coating and immersion method/spin coating/spin coating, respectively. The experimental result indicates that uniform and smooth perovskite absorber layer with good optical absorption and relative low Rs and Rsh can be obtained by this route. The element distribution through the thin film is very uniform, demonstrating the perovskite is uniformly filled into the mesoporous TiO2 layer. The atom ratio of the Pb and I is estimated to be 1:2.4. The fabricated PSC shows short-circuit photocurrent density (JSC) of 25.71 mA/cm2, open-circuit voltage (VOC) of 800 mV, fill factor (FF) of 42.45% and power conversion efficiency (PCE) of 8.73%. The simple and practical fabrication route without glove-box can be beneficial to industrial production of the PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Cheng, J. Lin, CrystEngComm 12, 2646–2662 (2010)

    Article  CAS  Google Scholar 

  2. Z. Zhao, F. Gu, H. Rao, S. Ye, Z. Liu, Z. Bian, C. Huang, Adv. Energy Mater. 9, 1802671 (2019)

    Article  CAS  Google Scholar 

  3. J. Miao, F. Zhang, J. Mater. Chem. C 7, 1741 (2019)

    Article  CAS  Google Scholar 

  4. K.M. Sim, A. Swarnkar, A. Nag, D.S. Chung, Laser Photon. Rev. 12, 1700209 (2018)

    Article  CAS  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  6. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.Y. Yang, J.H. Noh, J.W. Seo, Nature 567, 511 (2019)

    Article  CAS  Google Scholar 

  7. https://www.nrel.gov/pv/cell-efficiency.html

  8. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341–344 (2013)

    Article  CAS  Google Scholar 

  9. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643–647 (2012)

    Article  CAS  Google Scholar 

  10. P. Chen, E. Wang, X. Yin, H. Xie, M. Que, B. Gao, W. Que, J. Colloid Interfaces Sci. 532, 182–189 (2018)

    Article  CAS  Google Scholar 

  11. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  CAS  Google Scholar 

  12. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

    Article  CAS  Google Scholar 

  13. M. Park, W. Cho, G. Lee, S.C. Hong, M.-C. Kim, J. Yoon, N. Ahn, M. Choi, Small 15, 1804005 (2019)

    Article  CAS  Google Scholar 

  14. V. Arivazhagan, J. Xie, Z. Yang, P. Hang, M.M. Parvathi, K. Xiao, C. Cui, D. Yang, X. Yu, Solar Energy 181, 339–344 (2019)

    Article  CAS  Google Scholar 

  15. H.J. Snaith, Nat. Mater. 17, 372 (2018)

    Article  CAS  Google Scholar 

  16. Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Science 361, eaat8235 (2018)

    Article  CAS  Google Scholar 

  17. Q. Guo, F. Yuan, B. Zhang, S. Zhou, J. Zhang, Y. Bai, L. Fan, T. Hayat, A. Alsaedi, Z.A. Tan, Nanoscale 11, 115–124 (2019)

    Article  CAS  Google Scholar 

  18. H. Li, K. Zhu, K. Zhang, P. Huang, D. Li, L. Yuan, T. Cao, Z. Sun, Z. Li, Q. Chen, B. Song, H. Zhu, Y. Zhou, Org. Electron. 66, 47–52 (2019)

    Article  CAS  Google Scholar 

  19. Z. Yang, J. Pan, Y. Liang, Q. Li, D. Xu, Small 14, 1802240 (2018)

    Article  CAS  Google Scholar 

  20. S.A. Moyez, S. Roy, Solar Energy Mater. Solar Cells 185, 145–152 (2018)

    Article  CAS  Google Scholar 

  21. N.Y. Nia, M. Zendehdel, L. Cinà, F. Matteocci, A.D. Carlo, J. Mater. Chem. A 6, 659–671 (2018)

    Article  Google Scholar 

  22. J. Troughton, C. Charbonneau, M.J. Carnie, M.L. Davies, D.A. Worsley, T.M. Watson, J. Mater. Chem. A 3, 9123–9127 (2015)

    Article  CAS  Google Scholar 

  23. Y.C. Huang, C.F. Li, Z.H. Huang, P.H. Liu, C.S. Tsao, Solar Energy 177, 255–261 (2019)

    Article  CAS  Google Scholar 

  24. S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Adv. Energy Mater. 8, 1802060 (2018)

    Article  CAS  Google Scholar 

  25. S. Sánchez, M. Vallés-Pelarda, J.A. Alberola-Borràs, R. Vidal, J.J. Jerónimo-Rendón, M. Saliba, P.P. Boix, I. Mora-Seró, Mater. Today 31, 39–46 (2019)

    Article  CAS  Google Scholar 

  26. S. Sanchez, X. Hua, N. Phung, U. Steiner, A. Abate, Adv. Energy Mater. 8, 1702915 (2018)

    Article  CAS  Google Scholar 

  27. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81–86 (2015)

    Article  CAS  Google Scholar 

  28. D. Dastan, S.P.U. Londhe, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 25, 3473–3479 (2014)

    CAS  Google Scholar 

  29. A. Rapsomanikis, D. Karageorgopoulos, P. Lianos, E. Stathatos, Solar Energy Mater. Solar Cells 151, 36–43 (2016)

    Article  CAS  Google Scholar 

  30. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 356, 59–62 (2017)

    Article  CAS  Google Scholar 

  31. J. Chen, L. Zuo, Y. Zhang, X. Lian, W. Fu, J. Yan, J. Li, G. Wu, C.Z. Li, H. Chen, Adv. Energy Mater. 8, 1800438 (2018)

    Article  CAS  Google Scholar 

  32. L. Yang, Y. Yan, G. Wang, J. Guo, Y. Yang, Acta Ecol. Sin. 31, 3668–3676 (2011)

    Google Scholar 

  33. H. Gao, C. Ban, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fuand, Z. Zou, ACS Appl. Mater. Interfaces 7, 9110–9117 (2015)

    Article  CAS  Google Scholar 

  34. J. Li, C. Zhao, H. Zhang, J. Tong, P. Zhang, C. Yang, Y. Xia, D. Fan, Chin. Phys. B 25, 028402 (2016)

    Article  CAS  Google Scholar 

  35. T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, J. Phys. Chem. Lett. 5(7), 1096–1102 (2014)

    Article  CAS  Google Scholar 

  36. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, Science 345(6194), 295–298 (2014)

    Article  CAS  Google Scholar 

  37. Y. Xiao, G. Han, Y. Li, M. Li, Y. Chang, J. Wu, J. Mater. Chem. A 2, 16531–16537 (2014)

    Article  CAS  Google Scholar 

  38. M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, N. Yuan, RSC Adv. 5, 20521–20529 (2015)

    Article  CAS  Google Scholar 

  39. D. Dastan, Appl. Phys. A 123, 699 (2017)

    Article  CAS  Google Scholar 

  40. I. Montes-Valenzuela, F. Pérez-Sánchez, A. Morales-Acevedo, J. Mater. Sci.: Mater. Electron. 29, 15404–15410 (2018)

    CAS  Google Scholar 

  41. J. Yang, X. Zhu, H. Wang, X. Wang, C. Hao, R. Fan, D. Dastan, Z. Shi, Compos. Part A 131, 105814 (2020)

    Article  CAS  Google Scholar 

  42. M. Nanu, J. Schoonman, A. Goossens, Nano Lett. 5(9), 1716–1719 (2005)

    Article  CAS  Google Scholar 

  43. M. Nanu, J. Schoonman, A. Goossens, Adv. Mater. 16(5), 453–456 (2004)

    Article  CAS  Google Scholar 

  44. S. Guldin, S. Hüttner, M. Kolle, M.E. Welland, P. Müller-Buschbaum, R.H. Friend, U. Steiner, N. Tétreault, Nano Lett. 10(7), 2303–2309 (2010)

    Article  CAS  Google Scholar 

  45. S.S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 9(2), 507–513 (2009)

    Article  CAS  Google Scholar 

  46. S. Jang, J. Yoon, K. Ha, M. Kim, D.H. Kim, S.M. Kim, S.M. Kang, S.J. Park, H.S. Jung, M. Choi, Nano Energy 22, 499–506 (2016)

    Article  CAS  Google Scholar 

  47. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26(37), 6503–6509 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 11604097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinmiao Chen or Xiaoming Dou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Chen, Q., Yamaguchi, Y. et al. Perovskite solar cells prepared under infrared irradiation during fabrication process in air ambience. J Mater Sci: Mater Electron 31, 9535–9542 (2020). https://doi.org/10.1007/s10854-020-03495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03495-4

Navigation