Skip to main content
Log in

Room temperature dual ferroic behavior induced by (Bi, Ni) co-doping in nanocrystalline Nd0.7Bi0.3Fe1−xNixO3 (0 ≤ x ≤ 0.3)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline samples of Nd0.7Bi0.3Fe1−xNixO3 (x = 0, 0.1, 0.2, and 0.3) are synthesized using sol-gel auto-combustion process to investigate their structural, electrical, magnetic, and thermal properties. Phase purity and crystallinity of the samples are determined through x-ray diffraction (XRD) data. XRD patterns along with Rietveld refinement reveal orthorhombic structure with Pbnm space group. Unit cell parameters, bond angles, and bond lengths for all the samples have been determined. Crystallite size calculated by Scherrer equation is found to be in the range of 15–21 nm. The characteristic bands in the FTIR spectra further confirm the formation of our samples. FE-SEM images indicate the homogeneous distribution of particles on large scale and Ni-doped samples show some wall-like nanostructure in the morphology. EDX spectra confirm the elemental composition without any impurity element. The polarization versus electric field (P-E) and magnetization versus magnetic field (M-H) loops exhibit the multiferroic nature of the material. The sample with concentration x = 0.2 shows the maximum value of polarization (Pm) while maximum magnetization is achieved for x = 0.1 concentration. The specific heat capacity (Cp), endothermic, and exothermic peaks of the materials have been determined in the broad temperature range with the help of DTA measurements in the controlled nitrogen atmosphere. The Néel temperature of the parent system is found to be 742 K and that decreases up to 573 K on Ni doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, C. Venkateswaran, Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. J. Appl. Phys. 120, 034101–034108 (2016). https://doi.org/10.1063/1.4954842

    Article  CAS  Google Scholar 

  2. M. Yousefi, S. Soradi Zeid, M. Khorasani-Motlagh, Synthesis and characterization of nano-structured perovskite type neodymium orthoferrite NdFeO3. Curr. Chem. Lett. 6, 23–30 (2017). https://doi.org/10.5267/j.ccl.2016.10.002

    Article  Google Scholar 

  3. S.C. Parida, S. Dash, Z. Singh, R. Prasad, K.T. Jacob, V. Venugopal, Thermodynamic studies on NdFeO3(s). J. Solid State Chem. 164, 34–41 (2002). https://doi.org/10.1006/jssc.2001.9445

    Article  CAS  Google Scholar 

  4. C. Tongyun, S. Liming, L.I.U. Feng, Z.H.U. Weichang, NdFeO3 as anode material for S/O2 solid oxide fuel cells. J. Rare Earth. 30, 1138–1141 (2012). https://doi.org/10.1016/S1002-0721(12)60194-X

    Article  CAS  Google Scholar 

  5. S. Singh, A. Singh, B.C. Yadav, P.K. Dwivedi, Fabrication of nanobeads structured perovskite type neodymium iron oxide film: Its structural, optical, electrical and LPG sensing investigations. Sen. Actuators B: Chem. 177, 730–739 (2013). https://doi.org/10.1016/j.snb.2012.11.096

    Article  CAS  Google Scholar 

  6. S. Chanda, S. Saha, A. Dutta, T.P. Sinha, Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater. Res. Bull. 48, 1688–1693 (2013). https://doi.org/10.1016/j.materresbull.2012.12.075

    Article  CAS  Google Scholar 

  7. T. Murtaza, M.S. Khan, J. Ali, T. Hussain, K. Asokan, Structural, electrical and magnetic properties of multiferroic NdFeO3–SrTiO3 composites. J. Mater. Sci: Mater. Electron. 29, 18573–18580 (2018). https://doi.org/10.1007/s10854-018-9975-2

    Article  CAS  Google Scholar 

  8. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Exploring the role of Zn doping on the structure, morphology, and optical properties of LaFeO3. Appl. Phys. A. 125, 509 (2019). https://doi.org/10.1007/s00339-019-2806-3

    Article  CAS  Google Scholar 

  9. W. Sławiński, R. Przeniosło, I. Sosnowska, E. Suard, Spin reorientation and structural changes in NdFeO3. J. Phys. Condens. Matter 17, 4605–4614 (2005). https://doi.org/10.1088/0953-8984/17/29/002

    Article  CAS  Google Scholar 

  10. K.E. Babu, V.V. Kumar, K.B. Kumari, K. Neeraja, N.G. Praveena, V. Veeraiah, Electronic structure and magnetic properties of cubic perovskite PrFeO3 and NdFeO3: a first-principles study. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5048001

    Article  Google Scholar 

  11. S.J. Yuan, W. Ren, F. Hong, Y.B. Wang, J.C. Zhang, L. Bellaiche, S.X. Cao, G. Cao, Spin switching and magnetization reversal in single-crystal NdFeO3. Phys. Rev. 87, 184405 (2013). https://doi.org/10.1103/PhysRevB.87.184405

    Article  CAS  Google Scholar 

  12. M.A. Ahmed, A.A. Azab, A.H. El-Khawas, Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method. J. Mater. Sci: Mater. Electron. 26, 8765–8773 (2015). https://doi.org/10.1007/s10854-015-3556-4

    Article  CAS  Google Scholar 

  13. Nancy, R. Shukla, R. Dhaka, S. Dash, S.C. Sahoo, B. Bahera, P.D. Babu, R. Choudhary, A.K. Patra, Structural, dielectric and magnetic properties of Bi-Mn doped SmFeO3. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.12.112

    Article  Google Scholar 

  14. O. Rosales-González, F. Sánchez-De Jesús, F. Pedro-García, C.A. Cortés-Escobedo, M. Ramírez-Cardona, A.M. Bolarín-Miró, Enhanced multiferroic properties of YFeO3 by doping with Bi3+. Materials 12(13), 2054 (2019). https://doi.org/10.3390/ma12132054

    Article  CAS  Google Scholar 

  15. P. Suresh, K. Vijaya Laxmi, P.S. Anil Kumar, Enhanced room temperature multiferroic characteristics in hexagonal LuFe1 – xNixO3 (x = 0 – 0.3) nanoparticles. J. Magn. Magn. Mater. 448, 117–122 (2018). https://doi.org/10.1016/j.jmmm.2017.05.052

    Article  CAS  Google Scholar 

  16. S. A. Mir, M. Ikram, K. Asokan, Structural, optical and dielectric properties of Ni substituted NdFeO3. Optik 125, 6903–6908 (2014). https://doi.org/10.1016/j.ijleo.2014.08.050

    Article  CAS  Google Scholar 

  17. J. Shanker, G. Narsinga Rao, K. Venkataramana, D. Suresh Babu, Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys. Lett. A. 382, 2974–2977 (2018). https://doi.org/10.1016/j.physleta.2018.07.002

    Article  CAS  Google Scholar 

  18. M.D. Luu, N.N. Dao, D. Van Nguyen, N.C. Pham, T.N. Vu, T.D. Doan, A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As(V) adsorption. Adv. Nat. Sci: Nanosci Nanotechnol. 7(2), 025015 (2016). https://doi.org/10.1088/2043-6262/7/2/025015

    Article  CAS  Google Scholar 

  19. M. Khorasani-Motlagh, M. Noroozifar, M. Yousefi, S. Jahani, Chemical Synthesis and Characterization of Perovskite NdFeO3 Nanocrystals via a Co-Precipitation Method. Int. J. Nanosci. Nanotechnol. 9, 7–14 (2013). http://www.ijnnonline.net/article_3874.html

    Google Scholar 

  20. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloy Compd. 583, 21–31 (2014). https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  CAS  Google Scholar 

  21. J. Agus, S. Samnur, K. Triyana, E.H. Sujiono, Effect of sintering temperature on crystal structure and surface morphology of NdFeO3 oxide alloy materials prepared by solid reaction method. Key Eng. Mater. 811, 158 (2019). https://doi.org/10.4028/www.scientific.net/KEM.811.158

    Article  Google Scholar 

  22. A. Somvanshi, S. Manzoor, S. Husain, Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5032578

    Article  Google Scholar 

  23. R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, Hopping conduction in bismuth modified zinc vanadate glasses: An applicability of Mott’s model. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4768898

    Article  Google Scholar 

  24. Y. Du, Z.X. Cheng, X.-L. Wang, S.X. Dou, Structure, magnetic, and thermal properties of Nd1 – xLaxCrO3 (0 ≤ x ≤ 1.0). J. Appl. Phys. 108, 093914 (2010). https://doi.org/10.1063/1.3505800

    Article  CAS  Google Scholar 

  25. A. Somvanshi, S. Husain, W. Khan, Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. J. Alloy Compd. 778, 439–451 (2019). https://doi.org/10.1016/j.jallcom.2018.11.095

    Article  CAS  Google Scholar 

  26. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  CAS  Google Scholar 

  27. A. Somvanshi, S. Husain, Study of structural, dielectric and optical properties of NdMnO3. AIP Conf. Proc. 1953, 030242 (2018). https://doi.org/10.1063/1.5032577

    Article  CAS  Google Scholar 

  28. N. Zarrin, S. Husain, Study of structural, morphological, optical, and dielectric behaviour of zinc-doped nanocrystalline lanthanum chromite. Appl. Phys. A. 124, 730 (2018). https://doi.org/10.1007/s00339-018-2139-7

    Article  CAS  Google Scholar 

  29. R.J. Wiglusz, K. Kordek, M. Małecka, A. Ciupa, M. Ptak, R. Pazik, P. Pohl, D. Kaczorowski, A new approach in the synthesis of La1 – xGdxFeO3 perovskite nanoparticles – structural and magnetic characterization. Dalton Trans. 44, 20067–20074 (2015). https://doi.org/10.1039/C5DT03378K

    Article  CAS  Google Scholar 

  30. A. Alqahtani, S. Husain, A. Somvanshi, W. Khan, Structural, morphological, thermal and optical investigations on Mn doped GdCrO3. J. Alloy Compd. 804, 401–414 (2019). https://doi.org/10.1016/j.jallcom.2019.07.028

    Article  CAS  Google Scholar 

  31. X.G. Li, A. Chiba, S. Takahashi, M. Sato, Oxidation characteristics and magnetic properties of iron ultrafine particles. J. Appl. Phys. 83, 3871–3875 (1998). https://doi.org/10.1063/1.366619

    Article  CAS  Google Scholar 

  32. R. Mathur, D.R. Sharma, S.R. Vadera, S.R. Gupta, B.B. Sharma, N. Kumar, Room temperature synthesis of nanocomposites of Mn-Zn ferrites in a polymer matrix. Nanostruct. Mater. 11, 677–686 (1999). https://doi.org/10.1016/S0965-9773(99)00356-6

    Article  CAS  Google Scholar 

  33. C. Shivakumara, A.K. John, S. Behera, N. Dhananjaya, R. Saraf, Photoluminescence and photocatalytic properties of Eu3+-doped ZnO nanoparticles synthesized by the nitrate-citrate gel combustion method. Eur. Phys. J. Plus 132, 44 (2017). https://doi.org/10.1140/epjp/i2017-11304-5

    Article  CAS  Google Scholar 

  34. K. Yao, C. Zhao, N. Sun, W. Lu, Y. Zhang, H. Wang, J. Wang, Freestanding CuS nanowalls: Ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm. 19(34), 5048–5057 (2017). https://doi.org/10.1039/c7ce01119a

    Article  CAS  Google Scholar 

  35. N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma, D. Singh, Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties. J. Sol-Gel Sci. Technol. 86, 73–82 (2018). https://doi.org/10.1007/s10971-018-4593-2

    Article  CAS  Google Scholar 

  36. C. Padurariu, L. Padurariu, L. Curecheriu, C. Ciomaga, N. Horchidan, C. Galassi, L. Mitoseriu, Role of the pore interconnectivity on the dielectric, switching and tunability properties of PZTN ceramics. Ceram. Int. 43, 5767–5773 (2017). https://doi.org/10.1016/j.ceramint.2017.01.123

    Article  CAS  Google Scholar 

  37. Y. Zhang, J. Roscow, R. Lewis, H. Khanbareh, V.Y. Topolov, M. Xie, C.R. Bowen, Understanding the effect of porosity on the polarisation-field response of ferroelectric materials. Acta Mater. 154, 100–112 (2018).https://doi.org/10.1016/j.actamat.2018.05.007

    Article  CAS  Google Scholar 

  38. I. Sosnowska, E. Steichele, A. Hewat, Reorientation phase transition in NdfeO3. Physica B + C 136, 394–396 (1986). https://doi.org/10.1016/S0378-4363(86)80099-7

    Article  CAS  Google Scholar 

  39. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, W. Khan, Structure of nanocrystalline Nd0.5R0.5FeO3 (R = La, Pr, and Sm) intercorrelated with optical, magnetic and thermal properties. J. Alloy Compd. 806, 1250–1259 (2019). https://doi.org/10.1016/j.jallcom.2019.07.333

    Article  CAS  Google Scholar 

  40. P.R. Vanga, R.V. Mangalaraja, M. Ashok, Effect of (Nd, Ni) co-doped on the multiferroic and photocatalytic properties of BiFeO3. Mater. Res. 72, 299 (2015). https://doi.org/10.1016/j.materresbull.2015.08.015

    Article  CAS  Google Scholar 

  41. J. Zhao, X. Zhang, S. Liu, W. Zhang, Z. Liu, Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3. J. Alloy Compd. 557, 120–123 (2013). https://doi.org/10.1016/j.jallcom.2013.01.005

    Article  CAS  Google Scholar 

  42. P. Kaur, K.K. Sharma, R. Pandit, R. Kumar, R.K. Kotnala, J. Shah, Temperature dependent dielectric and magnetic properties of GdFe1–xNixO3 (0.0 ≤ x ≤ 0.3) orthoferrites. J. Appl. Phys. 115, 224102 (2014). https://doi.org/10.1063/1.4882115

    Article  CAS  Google Scholar 

  43. M. Idrees, M. Nadeem, M. Mehmood, M. Atif, K.H. Chae, Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO3. J. Appl. Phys. 44(10), 105401 (2011). https://doi.org/10.1088/0022-3727/44/10/105401

    Article  CAS  Google Scholar 

  44. S. Manzoor, S. Husain, Analysis of Zn substitution on structure, optical absorption, magnetization, and high temperature specific heat anomaly of the nano-crystalline LaFeO3. J. Appl. Phys. 124, 065110 (2018). https://doi.org/10.1063/1.5025252

    Article  CAS  Google Scholar 

  45. S. Husain, A.O.A. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct. Nano-Object. 15, 17 (2018). https://doi.org/10.1016/j.nanoso.2018.03.002

    Article  Google Scholar 

  46. S.A. Mir, M. Ikram, K. Asokan, Effect of Ni doping on optical, electrical and magnetic properties of Nd orthoferrite. J. Phys Conf. Ser. 534, 012017 (2014). https://doi.org/10.1088/1742-6596/534/1/012017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors A. Somvanshi is thankful for financial support provided by UGC-DAE CSR, Mumbai under the project CRS-M-271. Authors are grateful to Dr. Shalendra Kumar, Electronic Materials & Nanomagnetism Lab, Amity University Gurgaon and Mr. Anuj Kumar, Department of Physics, IIT Roorkee for providing P-E and M-H characterizations respectively. Ms. Babli Debnath, Department of Physics, Tripura University is thankfully acknowledged for her immense help in FE-SEM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somvanshi, A., Husain, S., Manzoor, S. et al. Room temperature dual ferroic behavior induced by (Bi, Ni) co-doping in nanocrystalline Nd0.7Bi0.3Fe1−xNixO3 (0 ≤ x ≤ 0.3). J Mater Sci: Mater Electron 31, 11010–11020 (2020). https://doi.org/10.1007/s10854-020-03649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03649-4

Navigation